ABSTRACT:
The gut microbiota is an extremely active and dynamic community of microorganisms inhabiting the human GI tract, powerfully influencing the host in health and illness. It starts to emerge in infancy for multiple reasons; however, it is considered one of the chief factors that shape gut microbiota throughout life. Intestinal bacteria play a role in maintaining the metabolic and immunological balances in place and providing defence against infections. A lack of balance of gut bacterial composition has been associated with a wide variety of inflammatory diseases and infections, referred to as dysbiosis. In order to understand such findings, several points must be addressed: the differences between people, heterogeneity of populations along the gastrointestinal tract, functional redundancy of populations, and the distinction between cause and effect in the context of dysbiosis. The review underlines the necessity of mechanistic research into host-microbe interactions and summarizes them against the background of our current knowledge about the evolution and composition of the human gastrointestinal microbiota, including the impact on integrity and health in the gut.
Cite this article:
Bhanu Pratap Singh, Mahi Kasana, Naman Chauhan. The Physiological aspects of Gut Microbiota. Asian Journal of Research in Pharmaceutical Sciences. 2025; 15(3):259-7. doi: 10.52711/2231-5659.2025.00039
Cite(Electronic):
Bhanu Pratap Singh, Mahi Kasana, Naman Chauhan. The Physiological aspects of Gut Microbiota. Asian Journal of Research in Pharmaceutical Sciences. 2025; 15(3):259-7. doi: 10.52711/2231-5659.2025.00039 Available on: https://ajpsonline.com/AbstractView.aspx?PID=2025-15-3-6
REFERENCES:
1. Bengmark S. Ecological control of the gastrointestinal tract. The role of probiotic flora. Gut. 1998 Jan 1; 42(1):2-7.
2. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005 Mar 25; 307(5717):1915-20.
3. Neish AS. Microbes in gastrointestinal health and disease. Gastroenterology. 2009 Jan 1; 136(1):65-80.
4. Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE. Metagenomic analysis of the human distal gut microbiome. Science. 2006 Jun 2; 312(5778):1355-9.
5. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biology. 2016 Aug 19; 14(8):e1002533.
6. Luckey TD. Introduction to intestinal microecology. The American journal of clinical nutrition. 1972 Dec 1; 25(12):1292-4.
7. Natividad JM, Verdu EF. Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications. Pharmacological Research. 2013 Mar 1; 69(1):42-51.
8. Den Besten G, Van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research. 2013 Sep 1; 54(9):2325-40.
9. Bäumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 2016 Jul 7; 535(7610):85-93.
10. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 2016 Apr 29; 352(6285):539-44.
11. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, Bäckhed F, Mithieux G. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell. 2014 Jan 16; 156(1):84-96.
12. Zhao LiPing ZL, Zhang Feng ZF, Ding XiaoYing DX, Wu GuoJun WG, Lam YY, Wang XueJiao WX, Fu HuaQing FH, Xue XinHe XX, Lu ChunHua LC, Ma JiLin MJ, Yu LiHua YL. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes.
13. Lin HV, Frassetto A, Kowalik Jr EJ, Nawrocki AR, Lu MM, Kosinski JR, Hubert JA, Szeto D, Yao X, Forrest G, Marsh DJ. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PloS one. 2012 Apr 10; 7(4): e35240.
14. Tang WW, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y, Hazen SL. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. New England Journal of Medicine. 2013 Apr 25; 368(17):1575-84.
15. De Mello VD, Paananen J, Lindström J, Lankinen MA, Shi L, Kuusisto J, Pihlajamäki J, Auriola S, Lehtonen M, Rolandsson O, Bergdahl IA. Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Scientific Reports. 2017 Apr 11; 7(1):46337.
16. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell JT, Spector TD. Human genetics shape the gut microbiome. Cell. 2014 Nov 6; 159(4):789-99.
17. Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P, Roca J. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006 Feb 1; 55(2):205-11.
18. Scher JU, Ubeda C, Artacho A, Attur M, Isaac S, Reddy SM, Marmon S, Neimann A, Brusca S, Patel T, Manasson J. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis and Rheumatology. 2015 Jan; 67(1):128-39.
19. De Goffau MC, Luopajärvi K, Knip M, Ilonen J, Ruohtula T, Härkönen T, Orivuori L, Hakala S, Welling GW, Harmsen HJ, Vaarala O. Fecal microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes. 2013 Apr 1; 62(4):1238-44.
20. Wang M, Karlsson C, Olsson C, Adlerberth I, Wold AE, Strachan DP, Martricardi PM, Åberg N, Perkin MR, Tripodi S, Coates AR. Reduced diversity in the early fecal microbiota of infants with atopic eczema. Journal of Allergy and Clinical Immunology. 2008 Jan 1; 121(1):129-34.
21. Schippa S, Iebba V, Barbato M, Di Nardo G, Totino V, Checchi MP, Longhi C, Maiella G, Cucchiara S, Conte MP. A distinctive'microbial signature'in celiac pediatric patients. BMC Microbiology. 2010 Dec; 10:1-0.
22. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M. A core gut microbiome in obese and lean twins. Nature. 2009 Jan 22; 457(7228):480-4.
23. Lambeth SM, Carson T, Lowe J, Ramaraj T, Leff JW, Luo L, Bell CJ, Shah VO. Composition, diversity and abundance of gut microbiome in prediabetes and type 2 diabetes. Journal of Diabetes and obesity. 2015 Dec 12; 2(3):1.
24. Menni C, Lin C, Cecelja M, Mangino M, Matey-Hernandez ML, Keehn L, Mohney RP, Steves CJ, Spector TD, Kuo CF, Chowienczyk P. Gut microbial diversity is associated with lower arterial stiffness in women. European Heart Journal. 2018 Jul 1; 39(25):2390-7.
25. Opstelten JL, Plassais J, van Mil SW, Achouri E, Pichaud M, Siersema PD, Oldenburg B, Cervino AC. Gut microbial diversity is reduced in smokers with Crohn's disease. Inflammatory Bowel Diseases. 2016 Sep 1; 22(9): 2070-7.
26. Beaumont M, Goodrich JK, Jackson MA, Yet I, Davenport ER, Vieira-Silva S, Debelius J, Pallister T, Mangino M, Raes J, Knight R. Heritable components of the human fecal microbiome are associated with visceral fat. Genome Biology. 2016 Dec; 17:1-9.
27. Menni C, Jackson MA, Pallister T, Steves CJ, Spector TD, Valdes AM. Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain. International Journal of Obesity. 2017 Jul; 41(7):1099-105.
28. Wong JM, De Souza R, Kendall CW, Emam A, Jenkins DJ. Colonic health: fermentation and short chain fatty acids. Journal of Clinical Gastroenterology. 2006 Mar 1; 40(3):235-43.
29. Gäbele E, Dostert K, Hofmann C, Wiest R, Schölmerich J, Hellerbrand C, Obermeier F. DSS induced colitis increases portal LPS levels and enhances hepatic inflammation and fibrogenesis in experimental NASH. Journal of Hepatology. 2011 Dec 1; 55(6):1391-9.
30. Baothman OA, Zamzami MA, Taher I, Abubaker J, Abu-Farha M. The role of gut microbiota in the development of obesity and diabetes. Lipids in Health and Disease. 2016 Dec; 15(1):1-8.
31. Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nature Reviews Microbiology. 2017 Oct; 15(10):630-8.
32. Sommer F, Rühlemann MC, Bang C, Höppner M, Rehman A, Kaleta C, Schmitt-Kopplin P, Dempfle A, Weidinger S, Ellinghaus E, Krauss-Etschmann S. Microbiomarkers in inflammatory bowel diseases: caveats come with caviar. Gut. 2017 Oct 1; 66(10):1734-8.
33. Schneider KM, Wirtz TH, Kroy D, Albers S, Neumann UP, Strowig T, Sellge G, Trautwein C. Successful Fecal Microbiota Transplantation in a Patient with Severe Complicated Infection after Liver Transplantation.
34. Cammarota G, Ianiro G, Tilg H, Rajilić-Stojanović M, Kump P, Satokari R, Sokol H, Arkkila P, Pintus C, Hart A, Segal J. European consensus conference on faecal microbiota transplantation in clinical practice. Gut. 2017 Apr 1; 66(4):569-80.
35. Kootte RS, Levin E, Salojärvi J, Smits LP, Hartstra AV, Udayappan SD, Hermes G, Bouter KE, Koopen AM, Holst JJ, Knop FK. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metabolism. 2017 Oct 3; 26(4):611-9.
36. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, Avershina E, Rudi K, Narbad A, Jenmalm MC, Marchesi JR. The composition of the gut microbiota throughout life, with an emphasis on early life. Microbial Ecology in Health and Disease. 2015 Dec 1; 26(1):26050.2014 May 21; 6(237):237ra65-.
37. Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, Avershina E, Rudi K, Narbad A, Jenmalm MC, Marchesi JR. The composition of the gut microbiota throughout life, with an emphasis on early life. Microbial Ecology in Health and Disease. 2015 Dec 1; 26(1):26050.
38. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proceedings of the National Academy of Sciences. 2011 Mar 15; 108(supplement_1):4554-61.
39. Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of Sciences. 2011 Mar 15; 108(supplement_1):4586-91.
40. Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, Nikkïla J, Monti D, Satokari R, Franceschi C, Brigidi P. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PloS one. 2010 May 17; 5(5): e10667.
41. Claesson MJ, Jeffery IB, Conde S, Power SE, O’connor EM, Cusack S, Harris H, Coakley M, Lakshminarayanan B, O’sullivan O, Fitzgerald GF. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012 Aug; 488(7410):178-84.
42. Woodmansey EJ, McMurdo ME, Macfarlane GT, Macfarlane S. Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects. Applied and Environmental Microbiology. 2004 Oct; 70(10):6113-22.
43. Biagi E, Candela M, Turroni S, Garagnani P, Franceschi C, Brigidi P. Ageing and gut microbes: perspectives for health maintenance and longevity. Pharmacological Research. 2013 Mar 1; 69(1):11-20.
44. Cammarota G, Ianiro G, Tilg H, Rajilić-Stojanović M, Kump P, Satokari R, Sokol H, Arkkila P, Pintus C, Hart A, Segal J. European consensus conference on faecal microbiota transplantation in clinical practice. Gut. 2017 Apr 1; 66(4):569-80.
45. Kootte RS, Levin E, Salojärvi J, Smits LP, Hartstra AV, Udayappan SD, Hermes G, Bouter KE, Koopen AM, Holst JJ, Knop FK. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metabolism. 2017 Oct 3; 26(4):611-9.
46. Nettleton JE, Reimer RA, Shearer J. Reshaping the gut microbiota: Impact of low-calorie sweeteners and the link to insulin resistance? Physiology and Behavior. 2016 Oct 1; 164:488-93.
47. Abou-Donia MB, El-Masry EM, Abdel-Rahman AA, McLendon RE, Schiffman SS. Splenda alters gut microflora and increases intestinal p-glycoprotein and cytochrome p-450 in male rats. Journal of Toxicology and Environmental Health, Part A. 2008 Sep 22; 71(21):1415-29.
48. Bian X, Chi L, Gao B, Tu P, Ru H, Lu K. Gut microbiome response to sucralose and its potential role in inducing liver inflammation in mice. Frontiers in physiology. 2017 Jul 24; 8:487.
49. Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, Gewirtz AT. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015 Mar 5; 519(7541):92-6.
50. Wu GD, Compher C, Chen EZ, Smith SA, Shah RD, Bittinger K, Chehoud C, Albenberg LG, Nessel L, Gilroy E, Star J. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut. 2016 Jan 1; 65(1):63-72.
51. Booijink CC, El‐Aidy S, Rajilić‐Stojanović M, Heilig HG, Troost FJ, Smidt H, Kleerebezem M, De Vos WM, Zoetendal EG. High temporal and inter‐individual variation detected in the human ileal microbiota. Environmental Microbiology. 2010 Dec; 12(12):3213-27.
52. Zoetendal EG, Raes J, Van Den Bogert B, Arumugam M, Booijink CC, Troost FJ, Bork P, Wels M, De Vos WM, Kleerebezem M. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. The ISME Journal. 2012 Jul; 6(7):1415-26.
53. Ramakrishna BS. The normal bacterial flora of the human intestine and its regulation. Journal of Clinical Gastroenterology. 2007 May 1; 41: S2-6.
54. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013 Aug 29; 500(7464):541-6.
55. O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Reports. 2006 Jul 1; 7(7):688-93.
56. Pei Z, Bini EJ, Yang L, Zhou M, Francois F, Blaser MJ. Bacterial biota in the human distal esophagus. Proceedings of the National Academy of Sciences. 2004 Mar 23; 101(12):4250-5.
57. Justesen T, Nielsen OH, Jacobsen IE, Lave J, Rasmussen SN. The normal cultivable microflora in upper jejunal fluid in healthy adults. Scandinavian Journal of Gastroenterology. 1984 Mar 1; 19(2):279-82.
58. Macpherson AJ, McCoy KD. Stratification and compartmentalisation of immunoglobulin responses to commensal intestinal microbes. InSeminars in Immunology 2013 Nov 30 (Vol. 25, No. 5, pp. 358-363). Academic Press.
59. Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nature Reviews Microbiology. 2016 Jan; 14(1):20-32.
60. Gu S, Chen D, Zhang JN, Lv X, Wang K, Duan LP, Nie Y, Wu XL. Bacterial community mapping of the mouse gastrointestinal tract. PloS One. 2013 Oct 7; 8(10): e74957.
61. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial flora. Science. 2005 Jun 10; 308(5728):1635-8.
62. Lavelle A, Lennon G, O'sullivan O, Docherty N, Balfe A, Maguire A, Mulcahy HE, Doherty G, O'donoghue D, Hyland J, Ross RP. Spatial variation of the colonic microbiota in patients with ulcerative colitis and control volunteers. Gut. 2015 Oct 1; 64(10):1553-61.
63. Van den Abbeele P, Belzer C, Goossens M, Kleerebezem M, De Vos WM, Thas O, De Weirdt R, Kerckhof FM, Van de Wiele T. Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. The ISME Journal. 2013 May; 7(5):949-61.
64. Li H, Limenitakis JP, Fuhrer T, Geuking MB, Lawson MA, Wyss M, Brugiroux S, Keller I, Macpherson JA, Rupp S, Stolp B. The outer mucus layer hosts a distinct intestinal microbial niche. Nature Communications. 2015 Sep 22; 6(1):8292.
65. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M. A core gut microbiome in obese and lean twins. Nature. 2009 Jan 22; 457(7228):480-4.
66. Jakobsson HE, Jernberg C, Andersson AF, Sjölund-Karlsson M, Jansson JK, Engstrand L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PloS One. 2010 Mar 24; 5(3): e9836.
67. Ding T, Schloss PD. Dynamics and associations of microbial community types across the human body. Nature. 2014 May 15; 509(7500):357-60.
68. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M. Enterotypes of the human gut microbiome. Nature. 2011 May 12; 473(7346):174-80.
69. Jeffery IB, Claesson MJ, O'toole PW, Shanahan F. Categorization of the gut microbiota: enterotypes or gradients? Nature Reviews Microbiology. 2012 Sep; 10(9):591-2.
70. Poretsky R, Rodriguez-R LM, Luo C, Tsementzi D, Konstantinidis KT. Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PloS One. 2014 Apr 8; 9(4): e93827.
71. Mizrahi-Man O, Davenport ER, Gilad Y. Taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: evaluation of effective study designs. PloS One. 2013 Jan 7; 8(1): e53608.
72. Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, Doré J. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Applied and Environmental Microbiology. 1999 Nov 1; 65(11):4799-807.
73. Peterson DA, Frank DN, Pace NR, Gordon JI. Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host and Microbe. 2008 Jun 12; 3(6):417-27.
74. Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R. Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nature Methods. 2008 Mar; 5(3):235-7.
75. Schirmer M, Ijaz UZ, D'Amore R, Hall N, Sloan WT, Quince C. Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Research. 2015 Mar 31; 43(6): e37-.
76. Joossens M, Huys G, Cnockaert M, De Preter V, Verbeke K, Rutgeerts P, Vandamme P, Vermeire S. Dysbiosis of the faecal microbiota in patients with Crohn's disease and their unaffected relatives. Gut. 2011 May 1; 60(5):631-7.
77. Karlsson FH, Fåk F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, Bäckhed F, Nielsen J. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nature Communications. 2012 Jan; 3(1):1245.
78. Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proceedings of the Nutrition Society. 2003 Feb; 62(1):67-72.
79. Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology. 2008 Feb 1; 134(2):577-94.
80. Musso G, Gambino R, Cassader M. Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Diabetes Care. 2010 Oct 1; 33(10):2277-84.
81. Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews Microbiology. 2014 Oct; 12(10):661-72.
82. Corrêa‐Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MA. Regulation of immune cell function by short‐chain fatty acids. Clinical and Translational Immunology. 2016 Apr; 5(4): e73.
83. Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proceedings of the Nutrition Society. 2003 Feb; 62(1):67-72.
84. Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology. 2017 Jan; 19(1):29-41.
85. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016 May 3; 7(3):189-200.
86. Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology. 2004 Sep; 54(5):1469-76.
87. Lin L, Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunology. 2017 Dec; 18:1-25.
88. Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Molecular cell. 2012 Nov 30; 48(4):612-26.
89. Chambers ES, Morrison DJ, Frost G. Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms? Proceedings of the Nutrition Society. 2015 Aug; 74(3):328-36.
90. Pingitore A, Chambers ES, Hill T, Maldonado IR, Liu B, Bewick G, Morrison DJ, Preston T, Wallis GA, Tedford C, Castañera González R. The diet‐derived short chain fatty acid propionate improves beta‐cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes, Obesity and Metabolism. 2017 Feb; 19(2):257-65.
91. Byrne CS, Chambers ES, Alhabeeb H, Chhina N, Morrison DJ, Preston T, Tedford C, Fitzpatrick J, Irani C, Busza A, Garcia-Perez I. Increased colonic propionate reduces anticipatory reward responses in the human striatum to high-energy foods. The American Journal of Clinical Nutrition. 2016 Jul 1; 104(1):5-14.
92. Nagai M, Obata Y, Takahashi D, Hase K. Fine-tuning of the mucosal barrier and metabolic systems using the diet-microbial metabolite axis. International Immunopharmacology. 2016 Aug 1; 37:79-86.
93. LeBlanc JG, Milani C, De Giori GS, Sesma F, Van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Current Opinion in Biotechnology. 2013 Apr 1; 24(2):160-8.
94. Martens JH, Barg H, Warren MA, Jahn D. Microbial production of vitamin B 12. Applied Microbiology and Biotechnology. 2002 Mar; 58:275-85.
95. LeBlanc JG, Milani C, De Giori GS, Sesma F, Van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Current Opinion in Biotechnology. 2013 Apr 1; 24(2):160-8.
96. Hill MJ. Intestinal flora and endogenous vitamin synthesis. European Journal of Cancer Prevention. 1997 Mar 1; 6(2): S43-5.
97. Staley C, Weingarden AR, Khoruts A, Sadowsky MJ. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Applied Microbiology and Biotechnology. 2017 Jan; 101:47-64.
98. Palau-Rodriguez M, Tulipani S, Isabel Queipo-Ortuño M, Urpi-Sarda M, Tinahones FJ, Andres-Lacueva C. Metabolomic insights into the intricate gut microbial–host interaction in the development of obesity and type 2 diabetes. Frontiers in Microbiology. 2015 Oct 27; 6:154996.
99. Natividad JM, Verdu EF. Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications. Pharmacological research. 2013 Mar 1; 69(1):42-51.
100. Smith K, McCoy KD, Macpherson AJ. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. InSeminars in Immunology 2007 Apr 1 (Vol. 19, No. 2, pp. 59-69). Academic Press.
101. Swanson PA, Kumar A, Samarin S, Vijay-Kumar M, Kundu K, Murthy N, Hansen J, Nusrat A, Neish AS. Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species-mediated inactivation of focal adhesion kinase phosphatases. Proceedings of the National Academy of Sciences. 2011 May 24; 108(21):8803-8.
102. Reunanen J, Kainulainen V, Huuskonen L, Ottman N, Belzer C, Huhtinen H, de Vos WM, Satokari R. Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer. Applied and Environmental Microbiology. 2015 Jun 1; 81(11):3655-62.
103. Chen HQ, Yang J, Zhang M, Zhou YK, Shen TY, Chu ZX, Zhang M, Hang XM, Jiang YQ, Qin HL. Lactobacillus plantarum ameliorates colonic epithelial barrier dysfunction by modulating the apical junctional complex and PepT1 in IL-10 knockout mice. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2010 Dec; 299(6): G1287-97.
104. Petersson J, Schreiber O, Hansson GC, Gendler SJ, Velcich A, Lundberg JO, Roos S, Holm L, Phillipson M. Importance and regulation of the colonic mucus barrier in a mouse model of colitis. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2011 Feb; 300(2): G327-33.
105. Wrzosek L, Miquel S, Noordine ML, Bouet S, Chevalier-Curt MJ, Robert V, Philippe C, Bridonneau C, Cherbuy C, Robbe-Masselot C, Langella P. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biology. 2013 Dec; 11:1-3.
106. Freitas M, Cayuela C, Antoine JM, Piller F, Sapin C, Trugnan G. A heat labile soluble factor from Bacteroides thetaiotaomicron VPI‐5482 specifically increases the galactosylation pattern of HT29‐MTX cells. Cellular Microbiology. 2001 May; 3(5):289-300.