Author(s): Prajakta D. Ingale, Bharatee P. Chaudhari, Vivekkumar K. Redasani

Email(s): prajktaingale88@gmail.com

DOI: 10.52711/2231-5659.2025.00049   

Address: Prajakta D. Ingale*, Bharatee P. Chaudhari, Vivekkumar K. Redasani
Department of Pharmaceutics, YSPM’s Yashoda Technical Campus, Satara 415011, Maharashtra, India.
*Corresponding Author

Published In:   Volume - 15,      Issue - 3,     Year - 2025


ABSTRACT:
When it comes to cancer treatment, chemotherapy is most frequently used in conjunction with surgery or radiation therapy. Nevertheless, it is well recognized that chemotherapy's off-target effects might result in adverse consequences and dose-limiting toxicities. The use of new delivery systems for cancer treatment that are based on natural and synthetic polymers and have improved pharmacokinetic and therapeutic potential has increased dramatically in the last ten years. Through a variety of processes, such as internal loading, chemical conjugation, physical adsorption, and enhanced and prolonged circulation, polymers can increase transport, enable selective targeting, and offer the controlled release of cargos. Biodegradable, biocompatible, and physicochemically stable polymers are notably thought to be the best delivery vehicles. Despite the challenges, this bio-inspired technology promises a promising future for efficient medication delivery. This review focuses on the obstacles that affect the effectiveness of chemotherapy medication delivery and the latest advancements utilizing natural and synthetic polymers as platforms to enhance cancer treatment drug delivery.


Cite this article:
Prajakta D. Ingale, Bharatee P. Chaudhari, Vivekkumar K. Redasani. A Review on Polymer Based Targeted Drug Delivery System for Anti-cancer Drugs. Asian Journal of Research in Pharmaceutical Sciences. 2025; 15(3):335-0. doi: 10.52711/2231-5659.2025.00049

Cite(Electronic):
Prajakta D. Ingale, Bharatee P. Chaudhari, Vivekkumar K. Redasani. A Review on Polymer Based Targeted Drug Delivery System for Anti-cancer Drugs. Asian Journal of Research in Pharmaceutical Sciences. 2025; 15(3):335-0. doi: 10.52711/2231-5659.2025.00049   Available on: https://ajpsonline.com/AbstractView.aspx?PID=2025-15-3-16


3. REFERENCE:
1.    Tran S, De Giovanni PJ, Piel B, Rai P. Cancer nanomedicine: a review of recent success in drug delivery. Clinical and Translational Medicine. 2017 Dec; 6: 1-21.
2.    Bahrami B, Hojjat -Farsangi M, Mohammadi H, Anvari E, Ghalamfarsa G, Yousefi M, Jadidi –Niaragh F. Nanoparticles and targeted drug delivery in cancer therapy. Immunology Letters. 2017 Oct 1; 190: 64-83.
3.    Bahrami B, Hojjat-Farsangi M, Mohammadi H, Anvari E, Ghalamfarsa G, Yousefi M, Jadidi-Niaragh F. Nanoparticles and targeted drug delivery in cancer therapy. Immunology letters. 2017 Oct 1; 190: 64-83.
4.    Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. European Journal of Pharmaceutics and Biopharmaceutics. 2015 Jun 1; 93: 52-79.
5.    Avramović N, Ignjatović N, Savić A. Platinum and ruthenium complexes as promising molecules in cancer therapy. Srpski Arhiv Za Celokupno Lekarstvo. 2019; 147(1-2): 105-9.
6.    Quintero Escobar M, Maschietto M, Krepischi AC, Avramovic N, Tasic L. Insights into the chemical biology of childhood embryonal solid tumors by NMR-based metabolomics. Biomolecules. 2019 Dec 8; 9(12): 843.
7.    Radic T, Coric V, Bukumiric Z, Pljesa-Ercegovac M, Djukic T, Avramovic N, Matic M, Mihailovic S, Dragicevic D, Dzamic Z, Simic T. GSTO1* CC Genotype (rs4925) predicts shorter survival in clear cell renal cell carcinoma male patients. Cancers. 2019 Dec 17; 11(12): 2038.
8.    (https://druginfo.medlineplus.gov/meds/a61303.html).
9.    (See more about Venetoclax Oral at https://www.webmd.com/drugs/2/drug-171572/).
10.    Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Advances in Enzyme Regulation. 2001 May 1; 41(1): 189-207.
11.    Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Advances in Enzyme Regulation. 2001 May 1; 41(1): 189-207.
12.    National Comprehensive Cancer Network. American Cancer Society.(2005). Nausea and vomiting: Treatment Guidelines for Patients With Cancer. 2007.
13.    Friedman R, Boye K, Flatmark K. Molecular modelling and simulations in cancer research. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2013 Aug 1;1836(1):1-4.
14.    Han B, Yang Y, Chen J, Tang H, Sun Y, Zhang Z, Wang Z, Li Y, Li Y, Luan X, Li Q. Preparation, characterization, and pharmacokinetic study of a novel long-acting targeted paclitaxel liposome with antitumor activity. International Journal of Nanomedicine. 2020 Jan 24:553-71.
15.    Gabizon A, Ohana P, Amitay Y, Gorin J, Tzemach D, Mak L, Shmeeda H. Liposome co-encapsulation of anti-cancer agents for pharmacological optimization of nanomedicine-based combination chemotherapy. Cancer Drug Resistance. 2021 Jun 19;4(2):463.
16.    Saneja A, Kumar R, Mintoo MJ, Dubey RD, Sangwan PL, Mondhe DM, Panda AK, Gupta PN. Gemcitabine and betulinic acid co-encapsulated PLGA− PEG polymer nanoparticles for improved efficacy of cancer chemotherapy. Materials Science and Engineering: C. 2019 May 1;98:764-71.
17.    Zhou Q, Zhang L, Yang T, Wu H. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. International Journal of Nanomedicine. 2018 May 18:2921-42.
18.    Nguyen TT, Nguyen CK, Nguyen TH, Tran NQ. Highly lipophilic pluronics-conjugated polyamidoamine dendrimer nanocarriers as potential delivery system for hydrophobic drugs. Materials Science and Engineering: C. 2017 Jan 1;70:992-9.
19.    Alfei S, Marengo B, Zuccari G, Turrini F, Domenicotti C. Dendrimer nanodevices and gallic acid as novel strategies to fight chemoresistance in neuroblastoma cells. Nanomaterials. 2020 Jun 26;10(6):1243.
20.    Cheng J, Gu YJ, Cheng SH, Wong WT. Surface functionalized gold nanoparticles for drug delivery. Journal of Biomedical Nanotechnology. 2013 Aug 1;9(8):1362-9.
21.    Singh RP, Sharma G, Singh S, Patne SC, Pandey BL, Koch B, Muthu MS. Effects of transferrin conjugated multi-walled carbon nanotubes in lung cancer delivery. Materials Science and Engineering: C. 2016 Oct 1;67:313-25.
22.    Rivero-Buceta E, Bernal-Gómez A, Vidaurre-Agut C, Moncholi EL, Benlloch JM, Manzano VM, Donoso CD, Botella P. Prostate cancer chemotherapy by intratumoral administration of Docetaxel-Mesoporous silica nanomedicines. International Journal of Pharmaceutics. 2024 Oct 25;664:124623.
23.    Legge CJ, Colley HE, Lawson MA, Rawlings AE. Targeted magnetic nanoparticle hyperthermia for the treatment of oral cancer. Journal of Oral Pathology and Medicine. 2019 Oct;48(9):803-9.
24.    Hu CM, Kaushal S, Cao HS, Aryal S, Sartor M, Esener S, Bouvet M, Zhang L. Half-antibody functionalized lipid− polymer hybrid nanoparticles for targeted drug delivery to carcinoembryonic antigen presenting pancreatic cancer cells. Molecular Pharmaceutics. 2010 Jun 7;7(3):914-20.
25.    Bellapu KK, Joga R, Kannan BR, Yerram S, Varpe P, Mergu T, Vasu PY, Srivastava S, Kumar S. Lipid-based mesoporous silica nanoparticles: a paradigm shift in management of pancreatic cancer. Pharmaceutical Patent Analyst. 2023 Nov 1;12(6):261-73.
26.    Reinsalu O, Ernits M, Linko V. Liposome-based hybrid drug delivery systems with DNA nanostructures and metallic nanoparticles. Expert Opinion on Drug Delivery. 2024 Jun 2;21(6):905-20.
27.    Chen G-B, Chen H-H, Liu C-M, et al. Mesoporous silica nanoparticles enveloped in cancer cell membranes that contain a pH-sensitive gatekeeper for cancer therapy. Biointerfaces Colloids Surf B. 2019;175:477–4886.
28.    Huai Y, Hossen MN, Wilhelm S, Bhattacharya R, Mukherjee P. Nanoparticle interactions with the tumor microenvironment. Bioconjugate Chemistry. 2019 Aug 13;30(9):2247-63.
29.    Domingues C, Santos A, Alvarez-Lorenzo C, Concheiro A, Jarak I, Veiga F, Barbosa I, Dourado M, Figueiras A. Where is nano today and where is it headed? A review of nanomedicine and the dilemma of nanotoxicology. ACS Nano. 2022 Jun 22;16(7):9994-10041.
30.    Knop K, Hoogenboom R, Fischer D, Schubert US. Poly (ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angewandte Chemie International Edition. 2010 Aug 23;49(36):6288-308.
31.    Zhang F, Liu MR, Wan HT. Discussion about several potential drawbacks of PEGylated therapeutic proteins. Biological and Pharmaceutical Bulletin. 2014 Mar 1;37(3):335-9.
32.    Zhang N, Wardwell PR, Bader RA. Polysaccharide-based micelles for drug delivery. Pharmaceutics. 2013 May 27;5(2):329-52.
33.    Thanou M, Verhoef JC, Junginger HE. Chitosan and its derivatives as intestinal absorption enhancers. Advanced Drug Delivery Reviews. 2001 Oct 1;50:S91-101.
34.    Patra JK, Das G, Fraceto LF, Campos EV, Rodriguez-Torres MD, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S. Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology. 2018 Dec;16:1-33.
35.    Pertici G. Introduction to bioresorbable polymers for biomedical applications. InBioresorbable Polymers for Biomedical Applications 2017 Jan 1 (pp. 3-29). Woodhead Publishing.
36.    Poole-Warren LA, Patton AJ. Introduction to biomedical polymers and biocompatibility. InBiosynthetic Polymers for Medical Applications 2016 Jan 1 (pp. 3-31). Woodhead Publishing.
37.    Luo K, Yang J, Kopečková P, Kopeček J. Biodegradable multiblock poly [N-(2-hydroxypropyl) methacrylamide] via reversible addition− fragmentation chain transfer polymerization and click chemistry. Macromolecules. 2011 Apr 26;44(8):2481-8.
38.    Alfurhood JA, Sun H, Kabb CP, Tucker BS, Matthews JH, Luesch H, Sumerlin BS. Poly (N-(2-hydroxypropyl) methacrylamide)–valproic acid conjugates as block copolymer nanocarriers. Polymer Chemistry. 2017;8(34):4983-7.
39.    Kopeček J, Kopečková P, Minko T, Lu ZR. HPMA copolymer–anticancer drug conjugates: design, activity, and mechanism of action. European Journal of Pharmaceutics and Biopharmaceutics. 2000 Jul 3;50(1):61-81.
40.    Tucker BS, Sumerlin BS. Poly (N-(2-hydroxypropyl) methacrylamide)-based nanotherapeutics. Polymer Chemistry. 2014;5(5):1566-72.
41.    Ulbrich K, Hola K, Subr V, Bakandritsos A, Tucek J, Zboril R. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chemical Reviews. 2016 May 11;116(9):5338-431.
42.    Soni V, Pandey V, Tiwari R, Asati S, Tekade RK. Design and evaluation of ophthalmic delivery formulations. InBasic fundamentals of Drug Delivery 2019 Jan 1 (pp. 473-538). Academic Press.
43.    Liu H, Chen H, Cao F, Peng D, Chen W, Zhang C. Amphiphilic block copolymer poly (acrylic acid)-b-polycaprolactone as a novel pH-sensitive nanocarrier for anti-cancer drugs delivery: In-Vitro and in-vivo evaluation. Polymers. 2019 May;11(5):820.
44.    Xu H, Yao Q, Cai C, Gou J, Zhang Y, Zhong H, Tang X. Amphiphilic poly (amino acid) based micelles applied to drug delivery: The in vitro and in vivo challenges and the corresponding potential strategies. Journal of Controlled Release. 2015 Feb 10;199:84-97.
45.    van der Koog L, Gandek TB, Nagelkerke A. Liposomes and extracellular vesicles as drug delivery systems: a comparison of composition, pharmacokinetics, and functionalization. Advanced Healthcare Materials. 2022 Mar;11(5):2100639.
46.    Cao Y, Ma Y, Tao Y, Lin W, Wang P. Intra-articular drug delivery for osteoarthritis treatment. Pharmaceutics. 2021 Dec;13(12):2166.
47.    Borges J, Mano JF. Molecular interactions driving the layer-by-layer assembly of multilayers. Chemical Reviews. 2014 Sep 24;114(18):8883-942.
48.    Correa S, Boehnke N, Deiss-Yehiely E, Hammond PT. Solution conditions tune and optimize loading of therapeutic polyelectrolytes into layer-by-layer functionalized liposomes. ACS Nano. 2019 Apr 15;13(5):5623-34.
49.    Fan J., Feliu N., Gogotsi Y., Caruso F., Dähne L., Decher G., De Geest B.G., Zhao S., Hammond P.T., Hersam M.C., et al. The Future of Layer-by-Layer Assembly: A Tribute to ACS Nano Associate Editor Helmuth Möhwald. 2019;13:6151–6169 in ACS Nano. 10.1021/acsnano.9b03326 is the DOI.
50.    Chen MX, Li BK, Yin DK, Liang J, Li SS, Peng DY. Layer-by-layer assembly of chitosan stabilized multilayered liposomes for paclitaxel delivery. Carbohydrate Polymers. 2014 Oct 13;111:298-304.
51.    Hardik Patel, Shraddha Parmar, Bhavna Patel, Int. J. Pharm. Sci. Rev. Res., 21(1), Jul – Aug 2013. 223-235.
52.    Ashishmasih, Amarkumar, Shivamsingh, Ajay Kumar Tiwari Fast Dissolving Tablet- A Review International Journal Of Current Pharmaceutical Research. 2017; 2(2).
 
 

Recomonded Articles:

Asian Journal of Research in Pharmaceutical Sciences (AJPSci) is an international, peer-reviewed journal, devoted to pharmaceutical sciences....... Read more >>>

RNI: Not Available                     
DOI: 10.52711/2231-5659 


Recent Articles




Tags