ABSTRACT:
Thiamine is the first vitamin discovered and belongs to Vit B family. The main effect seen with thiamine deficiency is Beri-Beri, Wernicke’s encephalopathy, Wernicke-Korsak off syndrome and are considered as a serious condition but often can be reversed. The deficient status of thiamine can also cause varied affects and can overlap with other conditions to exacerbate its potent effects. It is seen that thiamine is necessary for the metabolism of glucose in the form of cofactors, deficiency of which leads to accumulation of toxic glucose metabolites leading to formation of free radicals and oxidative stress. Glucose is not only important for the formation of energy but its improper metabolism proves to have deleterious effects in the body. In this review, an attempt is made to correlate microvascular complications of diabetes with thiamine deficiency and can be discerned that oxidative stress is one of the important factors for the progress of microvascular complications, as well as diabetic ketoacidosis, atherosclerosis and cardiovascular damage in patients with diabetes mellitus and these can be prevented or maintained by optimizing thiamine levels in the body.
Cite this article:
Ann V Chacko. Thiamine Deficiency and its Implications on Microvascular Complications of Diabetes Mellitus. Asian Journal of Research in Pharmaceutical Sciences. 2024; 14(3):256-2. doi: 10.52711/2231-5659.2024.00042
Cite(Electronic):
Ann V Chacko. Thiamine Deficiency and its Implications on Microvascular Complications of Diabetes Mellitus. Asian Journal of Research in Pharmaceutical Sciences. 2024; 14(3):256-2. doi: 10.52711/2231-5659.2024.00042 Available on: https://ajpsonline.com/AbstractView.aspx?PID=2024-14-3-11
REFERENCES:
1. Jurgenson CT, Begley TP, Ealick SE. The structural and biochemical foundations of thiamin biosynthesis. Annual Review of Biochemistry. 2009; 78(1): 569–603. doi: 10.1146/annurev.biochem.78.072407.102340
2. Ball GFM. Thiamin (vitamin B1). Springer Reference. 1998; 267–92. doi:10.1007/springerreference_107338
3. Page GL, Laight D, Cummings MH. Thiamine deficiency in diabetes mellitus and the impact of thiamine replacement on glucose metabolism and vascular disease. International Journal of Clinical Practice. 2011; 65(6): 684–90. doi:10.1111/j.1742-1241.2011. 02680.x
4. Office of dietary supplements - thiamin [Internet]. U.S. Department of Health and Human Services; 2023 [cited 2023 Sept 29]. Available from: https://ods.od.nih.gov/factsheets/Thiamin-HealthProfessional/
5. D. Sunitha, P. Anusri, M. Sudhakar. Wernicke-Korsakoff Syndrome: An Overview. Asian J. Pharm. Res. 2019; 9(2): 104-108.
6. Lonsdale D. A review of the biochemistry, metabolism and clinical benefits of thiamin(e) and its derivatives. Evidence-Based Complementary and Alternative Medicine. 2006; 3(1): 49–59. doi:10.1093/ecam/nek009
7. Thiamine [Internet]. U.S. National Library of Medicine; [cited 2023 Sept 29]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Vitamin-B1
8. Prinzo ZW. Thiamine deficiency and its prevention and control in major emergencies [Internet]. World Health Organization; [cited 2023 Sept 29]. Available from: https://www.who.int/publications-detail-redirect/WHO-NHD-99.13
9. Anwar A, Ahmed Azmi M, Siddiqui JA, Panhwar G, Shaikh F, Ariff M. Thiamine level in type I and type II diabetes mellitus patients: A comparative study focusing on hematological and biochemical evaluations. Cureus. 2020; doi:10.7759/cureus.8027
10. DiNicolantonio JJ, Niazi AK, Lavie CJ, O’Keefe JH, Ventura HO. Thiamine supplementation for the treatment of heart failure: A review of the literature. Congestive Heart Failure. 2013 Aug 1;19(4):214–22. doi:10.1111/chf.12037
11. Satyanarayana, U., and Chakrapani, U. (2006). Biochemistry (Third Revised Edition). Adfo Books.
12. Bettendorff L, Lakaye B, Kohn G, Wins P. Thiamine triphosphate: A ubiquitous molecule in search of a physiological role. Metabolic Brain Disease. 2014; 29(4): 1069–82. doi:10.1007/s11011-014-9509
13. Wiley KD, Gupta M. Thiamine (vitamin B1) deficiency. Encyclopedia of Neuroscience. 2023 Jul 23;4067–4067. doi:10.1007/978-3-540-29678-2_5990
14. Butterworth RF. Maternal thiamine deficiency: Still a problem in some world communities. The American Journal of Clinical Nutrition. 2001; 74(6): 712–3. doi:10.1093/ajcn/74.6.712
15. OsiezaghaK; AliS; FreemanC; BarkerNC; JabeenS; MaitraS; OlagbemiroY; RichieW; Bailey RK; Thiamine deficiency and delirium [Internet]. U.S. National Library of Medicine; 2013 [cited 2023 Oct 30]. Available from: https://pubmed.ncbi.nlm.nih.gov/23696956/
16. Vadivelan R, Dhanabal SP, Raja Rajeswari, Shanish A, Elango K, Suresh B. Oxidative Stress in Diabetes- A Key Therapeutic Agent. Research J. Pharmacology and Pharmacodynamics. 2010; 2(3): 221-227.
17. Jadhav Sameer S., Salunkhe Vijay R., Magdum Chandrakant S. Daily Consumption of Antioxidants: -Prevention of Disease is better than Cure. Asian J. Pharm. Res. 2013; 3(1): 33-39.
18. Goyal R, Singhal M, Jialal I. Type 2 diabetes - statpearls - NCBI bookshelf [Internet]. 2023 [cited 2023 Oct 30]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK513253/
19. Mohan V, Pradeepa R. Epidemiology of type 2 diabetes in India. Indian Journal of Ophthalmology. 2021 Nov 21; 69(11): 2932. doi: 10.4103/ijo.ijo_1627_21
20. Fowler MJ. Microvascular and macrovascular complications of diabetes. Clinical Diabetes. 2008; 26(2): 77–82. doi:10.2337/diaclin.26.2.77
21. Deshpande AD, Harris-Hayes M, Schootman M. Epidemiology of diabetes and diabetes-related complications. Physical Therapy. 2008; 88(11): 1254–64. doi:10.2522/ptj.20080020
22. S. Sivaprasad. Epidemiological Study on complications of Diabetes and its Treatment Options. Asian Journal of Pharmacy and Technology. 2022; 12(1): 38-0. doi: 10.52711/2231-5713.2022.00007
23. Virendra Singh Choudhary, Geeta Chaudhary. A Descriptive Study to Assess the Knowledge Regarding Diabetes Mellitus, Its Risk Factors and Complication among the Rural Community Sadiq, Faridkot (Punjab). Asian J. Nur. Edu. and Research. 2015; 5(2): 251-253. doi: 10.5958/2349-2996.2015. 00049.X
24. Hazaratali Panari, Vegunarani.M. Study on Complications of Diabetes Mellitus among the Diabetic Patients. Asian J. Nur. Edu. and Research. 2016; 6(2): 171-182.
25. Nix WA, Zirwes R, Bangert V, Kaiser RP, Schilling M, Hostalek U, et al. Vitamin B status in patients with type 2 diabetes mellitus with and without incipient nephropathy. Diabetes Research and Clinical Practice. 2015; 107(1): 157–65. doi: 10.1016/j.diabres.2014.09.058
26. Gonçalves SE, Gonçalves TJ, Guarnieri A, Risegato RC, Guimarães MP, de Freitas DC. Association between thiamine deficiency and hyperlactatemia among critically ill patients with diabetes infected by sars‐cov‐2. Journal of Diabetes. 2021; 13(5): 413–9. doi:10.1111/1753-0407.13156
27. Al-Daghri NM, Alharbi M, Wani K, Abd-Alrahman SH, Sheshah E, Alokail MS. Biochemical changes correlated with blood thiamine and its phosphate esters levels in patients with diabetes type 1 (DMT1) [Internet]. U.S. National Library of Medicine; 2015 [cited 2023 Oct 30]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4680506/#:~:text=Data%20confirmed%20the%20role%20of,HDL%2C%20blood%20glucose%2C%20triglycerides%20and
28. Anwar A, Ahmed Azmi M, Siddiqui JA, Panhwar G, Shaikh F, Ariff M. Thiamine level in type I and type II diabetes mellitus patients: A comparative study focusing on hematological and biochemical evaluations. Cureus. 2020; doi:10.7759/cureus.8027
29. Thornalley PJ, Jahan I, Ng R. Suppression of the accumulation of Triosephosphates and increased formation of methylglyoxal in human red blood cells during hyperglycaemia by thiamine in vitro. Journal of Biochemistry. 2001; 129(4): 543–9. doi: 10.1093/oxfordjournals.jbchem.a002889
30. Jagt, DL. Methylglyoxal, diabetes mellitus and diabetic complications. Drug Metabolism and Drug Interactions. 2008; 23(1–2): 93–124. doi:10.1515/dmdi.2008.23.1-2.93
31. A. Shamsaldeen Y, S. Mackenzie L, A. Lione L, D. Benham C. Methylglyoxal, a metabolite increased in diabetes is associated with insulin resistance, vascular dysfunction and neuropathies. Current Drug Metabolism. 2016; 17(4): 359–67. doi:10.2174/1389200217666151222155216
32. Kanase KG, Shinde NV, Bharti DK, Undale VR, Bhosale AV. Diabetes Macroangiopathy- A Review. Research J. Pharmacology and Pharmacodynamics. 2009; 1(2): 45-49.
33. Thornalley P. The potential role of thiamine (vitamin B1) in diabetic complications. Current Diabetes Reviews. 2005; 1(3): 287–98. doi:10.2174/157339905774574383
34. Dibyajyoti Saha, Ankit Tamrakar. Xenobiotics, Oxidative Stress, Free Radicals Vs. Antioxidants: Dance of Death to Heaven’s Life. Asian J. Res. Pharm. Sci. 2011; 1(2): 36-38.
35. Mee L, Nabokina SM, Sekar VT, Subramanian VS, Maedler K, Said HM. Pancreatic beta cells and islets take up thiamin by a regulated carrier-mediated process: Studies using mice and human pancreatic preparations. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2009; 297(1). doi:10.1152/ajpgi.00092.2009
36. Luong K vinhquoc, Nguyena LTH. The impact of thiamine treatment in the diabetes mellitus. Journal of Clinical Medicine Research. 2012 Jun; doi:10.4021/jocmr890w
37. Dębski B, Kurył T, Gralak MA, Pierzynowska J, Drywień M. Effect of inulin and oligofructose enrichment of the diet on rats suffering thiamine deficiency. Journal of Animal Physiology and Animal Nutrition. 2010; 95(3): 335–42. doi:10.1111/j.1439-0396.2010. 01059.x
38. P R, A P, Sundaresan. Effects of thiamine deficiency on the secretion of insulin and the metabolism of glucose in isolated rat pancreatic islets [Internet]. U.S. National Library of Medicine; 1991 [cited 2023 Oct 30]. Available from: https://pubmed.ncbi.nlm.nih.gov/1805801/
39. Hannukainen JC, Lautamäki R, Mari A, Pärkkä JP, Bucci M, Guzzardi MA, et al. Elevated glucose oxidation, reduced insulin secretion, and a fatty heart may be protective adaptions in ischemic CAD. The Journal of Clinical Endocrinology, Metabolism. 2016; 101(7): 2701–10. doi:10.1210/jc.2015-4091
40. Fridlyand LE, Philipson LH. Does the glucose-dependent insulin secretion mechanism itself cause oxidative stress in pancreatic β-cells? Diabetes. 2004; 53(8): 1942–8. doi:10.2337/diabetes.53.8.1942
41. Geetha P, Shanmugasundaram P. A Prospective Observational Study on assessment of risk factor associated with diabetic retinopathy in patients diagnosed with type 2 Diabetes Mellitus in south Indian population. Research J. Pharm. and Tech. 2019; 12(2): 595-599. doi: 10.5958/0974-360X.2019.00106.9
42. Duh EJ, Sun JK, Stitt AW. Diabetic retinopathy: Current understanding, mechanisms, and treatment strategies. JCI Insight. 2017; 2(14). doi: 10.1172/jci.insight.93751
43. Ren J, Zhang S, Pan Y, Jin M, Li J, Luo Y, et al. Diabetic retinopathy: Involved cells, biomarkers, and treatments. Frontiers in Pharmacology. 2022; 13. doi:10.3389/fphar.2022.953691
44. Selva ML, Beltramo E, Pagnozzi F, Bena E, Molinatti PA, Molinatti GM, et al. Thiamine corrects delayed replication and decreases production of lactate and advanced glycation end-products in bovine retinal and human umbilical vein endothelial cells cultured under high glucose conditions. Diabetologia. 1996; 39(11): 1263–8. doi:10.1007/s001250050568
45. Kowluru RA. Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in Diabetic Rats. Diabetes. 2003;52(3):818–23. doi:10.2337/diabetes.52.3.818
46. Daniele LL, Han JY, Samuels IS, Komirisetty R, Mehta N, McCord JL, et al. Glucose uptake by glut1 in photoreceptors is essential for outer segment renewal and Rod Photoreceptor Survival. The FASEB Journal. 2022; 36(8). doi:10.1096/fj.202200369r
47. Shukla UV, Tripathy K. Diabetic retinopathy - statpearls - NCBI bookshelf [Internet]. 2023 [cited 2023 Oct 30]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK560805/
48. Kowluru RA, Chan P-S. Oxidative stress in diabetic retinopathy. Experimental Diabetes Research. 2021; doi:10.3390/books978-3-0365-0449-0
49. Beltramo E, Mazzeo A, Porta M. Thiamine and diabetes: Back to the future? Acta Diabetologica. 2021; 58(11): 1433–9. doi:10.1007/s00592-021-01752-4
50. Cinici E, Dilekmen N, Senol O, Arpalı E, Cinici O, Tanas S. Blood thiamine pyrophosphate concentration and its correlation with the stage of diabetic retinopathy. International Ophthalmology. 2020; 40(12): 3279–84. doi:10.1007/s10792-020-01513-2
51. Hammes H-P, Du X, Edelstein D, Taguchi T, Matsumura T, Ju Q, et al. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nature Medicine. 2003; 9(3): 294–9. doi:10.1038/nm834
52. Beltramo E, Mazzeo A, Lopatina T, Trento M, Porta M. Thiamine transporter 2 is involved in high glucose-induced damage and altered thiamine availability in cell models of diabetic retinopathy. Diabetes and Vascular Disease Research. 2019; 17(1): 147916411987842. doi:10.1177/1479164119878427
53. Mazzeo A, Barutta F, Bellucci L, Trento M, Gruden G, Porta M, et al. Reduced thiamine availability and hyperglycemia impair thiamine transport in renal glomerular cells through modulation of thiamine transporter 2. Biomedicines. 2021; 9(4): 385. doi:10.3390/biomedicines9040385
54. Suleyman H, Cinici E, Ahiskali I, Cetin N, Suleyman B, Kukula O, et al. Effect of thiamine pyrophosphate on retinopathy induced by hyperglycemia in rats: A biochemical and pathological evaluation. Indian Journal of Ophthalmology. 2016 Jun; 64(6): 434. doi:10.4103/0301-4738.187666
55. Thiamine deficiency and diabetic polyneuropathy [Internet]. 2022 [cited 2023 Oct 31]. Available from: https://www.naturalmedicinejournal.com/journal/thiamine-deficiency-and-diabetic-polyneuropathy#:~:text=Thiamine%20deficiency%20is%20a%20well,and%20the%20polyneuropathy%20of%20diabetes.
56. Thornalley PJ. Glycation in diabetic neuropathy: Characteristics, consequences, causes, and therapeutic options. International Review of Neurobiology. 2002; 37–57. doi:10.1016/s0074-7742(02)50072-6
57. Muriach M, Flores-Bellver M, Romero FJ, Barcia JM. Diabetes and the brain: Oxidative stress, inflammation, and autophagy. Oxidative Medicine and Cellular Longevity. 2014; 2014: 1–9. doi:10.1155/2014/102158
58. Griggs RB, Laird DE, Donahue RR, Fu W, Taylor BK. METHYLGLYOXAL requires AC1 and TRPA1 to produce pain and spinal neuron activation. Frontiers in Neuroscience. 2017; 11. doi:10.3389/fnins.2017.00679
59. Shangari N, Depeint F, Furrer R, Bruce WR, O’Brien PJ. The effects of partial thiamin deficiency and oxidative stress (i.e., glyoxal and methylglyoxal) on the levels of α‐oxoaldehyde plasma protein adducts in Fischer 344 rats. FEBS Letters. 2005; 579(25): 5596–602. doi: 10.1016/j.febslet.2005.09.027
60. Haupt E, Ledermann H, Köpcke W. Benfotiamine in the treatment of diabetic polyneuropathy – a three-week randomized, Controlled Pilot Study (BEDIP study). Int Journal of Clinical Pharmacology and Therapeutics. 2005; 43(2): 71–7. doi:10.5414/cpp43071
61. Bönhof GJ, Sipola G, Strom A, Herder C, Strassburger K, Knebel B, et al. Bond study: A randomised double-blind, placebo-controlled trial over 12 months to assess the effects of benfotiamine on morphometric, neurophysiological and clinical measures in patients with type 2 diabetes with symptomatic polyneuropathy. BMJ Open. 2022; 12(2). doi:10.1136/bmjopen-2021-057142
62. Rabbani N, Alam SS, Riaz S, Larkin JR, Akhtar MW, Shafi T, et al. High-dose thiamine therapy for patients with type 2 diabetes and microalbuminuria: A randomised, double-blind placebo-controlled pilot study. Diabetologia. 2008; 52(2): 208–12. doi:10.1007/s00125-008-1224-4
63. 63.Babaei-Jadidi R, Karachalias N, Ahmed N, Battah S, Thornalley PJ. Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine. Diabetes. 2003; 52(8): 2110–20. doi:10.2337/diabetes.52.8.2110
64. Samir Derouiche, TaissirCheradid, Messaouda Guessoum. Heavy metals, Oxidative stress and Inflammation in Pathophysiology of Chronic Kidney disease - A Review. Asian J. Pharm. Tech. 2020; 10(3): 202-206. doi: 10.5958/2231-5713.2020.00033.1
65. Rabbani N, Thornalley PJ. Emerging role of thiamine therapy for prevention and treatment of early-stage diabetic nephropathy. Diabetes, Obesity and Metabolism. 2011; 13(7): 577–83. doi:10.1111/j.1463-1326.2011. 01384.x
66. Alkhalaf A, Kleefstra N, Groenier KH, Bilo HJ, Gans RO, Heeringa P, et al. Effect of benfotiamine on advanced glycation endproducts and markers of endothelial dysfunction and inflammation in diabetic nephropathy. PLoS ONE. 2012; 7(7). doi: 10.1371/journal.pone.0040427