Author(s): Neha Sharma, Tarun Kumar Sharma, Vinay Pandit, M. S Ashawat

Email(s): imnehavk@gmail.com

DOI: 10.52711/2231-5659.2021-11-2-4   

Address: Neha Sharma*, Tarun Kumar Sharma, Dr. Vinay Pandit, Dr. M. S Ashawat
Department of Pharmaceutics, Laureate Institute of Pharmacy, Kathog, Jawalamukhi, Kangra (H.P.) 177101, India.
*Corresponding Author

Published In:   Volume - 11,      Issue - 2,     Year - 2021


ABSTRACT:
Transdermal drug delivery system used to transport the drug across the skin deep into systemic circulation. The main advantages of Transdermal drug delivery system improved patient compliance, sustained release, avoidance of gastric irritation, as well as elimination of pre-systemic first-pass effect. But most of therapeutic agents is limited due to thickness of stratum corneum, which act as a barrier for the delivery of various drug molecules and only few molecules are able to reach the action site. Microneedles are the new form of delivery system, which are used to increase the delivery of drug through this route and overcoming the number of problems related to conventional drug delivery system the main aim of this review to focus on new innovation in transdermal drug delivery systems. In the microneedle drug delivery system, the skin is temporarily broken, that creating micron size pathways that deliver the sufficient amount of drug directly into the stratum corneum from which the drug can directly go into the systemic circulation. In this review, we describe different type of microneedles can be solid, coated, dissolving and biodegradable microneedles and their method of fabrication. Microneedles can be manufactured in different forms like hollow, solid, and dissolving. Also describe materials used for fabrication, fabrication techniques, methodology of drug delivery such as Poke and patch, Coat and poke, Poke and release, Poke and flow and evaluation parameters.


Cite this article:
Neha Sharma, Tarun Kumar Sharma, Vinay Pandit, M. S Ashawat. A Smart and Potential approach for Transdermal Drug Delivery using Microneedles: A Review. Asian Journal of Research in Pharmaceutical Sciences. 2021; 11(2):113-0. doi: 10.52711/2231-5659.2021-11-2-4

Cite(Electronic):
Neha Sharma, Tarun Kumar Sharma, Vinay Pandit, M. S Ashawat. A Smart and Potential approach for Transdermal Drug Delivery using Microneedles: A Review. Asian Journal of Research in Pharmaceutical Sciences. 2021; 11(2):113-0. doi: 10.52711/2231-5659.2021-11-2-4   Available on: https://ajpsonline.com/AbstractView.aspx?PID=2021-11-2-4


REFERENCE:
1.    Dhamecha, D. L., Rathi, A. A., Saifee, M., Lahoti, S. R., and Dehghan, M. H. G. (2009). Drug vehicle-based approaches of penetration enhancement. Int J Pharm Pharm Sci, 1(1): 24-46.
2.    Langer R. Transdermal drug delivery: past progress, current status, and future prospects. Adv Drug Deliv Rev. 2004 Mar 27; 56(5): 557-8. doi: 10.1016/j.addr.2003.10.021. PMID: 15019745.
3.    Ledger PW. Skin biological issues in electrically enhanced transdermal delivery. Adv. Drug Deliv. Rev.1992; 9: 289-307.
4.    Chouthri. D, N. Jawahar, Mythili. L, Arun Radhakrishnan. Spray Technology: A Novel Approach in Transdermal Drug Delivery. Research J. Pharm. and Tech 2020; 13(2):1015-1027. doi: 10.5958/0974-360X.2020.00188.2
5.    Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004 Feb;3(2):115-24. doi: 10.1038/nrd1304. PMID: 15040576.
6.    Smita Nayak, Madhuri Jadhav, Vaidhun Bhaskar. Recent Advances in Ocular Drug Delivery Systems. Research J. Pharm. and Tech. 2016; 9(7): 995-1006. doi: 10.5958/ 0974-360X.2016.00189.X
7.    Bora, Pushpak and Kumar, Lokesh and Bansal, Arvind. (2008). Microneedle technology for advanced drug delivery: Evolving vistas. Curr. Res. Inf. Pharm. Sci.9
8.    Bhairam Monika, Roy Amit, Bahadur Sanjib, Banafar Alisha, Patel Mihir, Turkane Dhanushram. Transdermal Drug Delivery System with Formulation and Evaluation Aspects: Overview. Research J. Pharm. and Tech. 2012; 5(9): 1168-1176.
9.    Demir YK, Akan Z, Kerimoglu O (2013) Characterization of Polymeric Microneedle Arrays for Transdermal Drug Delivery. PLoS ONE 8(10): e77289. https://doi.org/10.1371/journal. pone.0077289.
10.    Sweta S. Solanki, Karan B. Patel, Jalpa G. Patel, Manish P. Patel, Jayvadan K. Patel. Transdermal Drug Delivery Systems: A Review. Research J. Pharm. and Tech. 2012; 5(6): 757-763.
11.    Rakesh K Sindhu, Mansi Chitkara, Gagandeep Kaur, Preeti Jaiswal, Ashutosh Kalra, Inderbir Singh, Pornsak Sriamornsak. Skin Penetration Enhancer’s in Transdermal Drug Delivery Systems. Research J. Pharm. and Tech. 2017; 10(6): 1809-1815. doi: 10.5958/0974-360X.2017.00319.5
12.    Ch. Nagadev, M. Durga Srinivasa Rao, P. Venkatesh, D. Hepcykalarani, R. Prema. A Review on Transdermal Drug Delivery Systems. Asian J. Res. Pharm. Sci. 2020; 10(2):109-114. doi: 10.5958/2231-5659.2020.00021.1
13.    Singh TR, Garland MJ, Cassidy CM, Migalska K, Demir YK, Abdelghany S, Ryan E, Woolfson AD, Donnelly RF. Microporation techniques for enhanced delivery of therapeutic agents. Recent Pat Drug DelivFormul. 2010; 4(1): 1-17. doi: 10.2174/187221110789957174. PMID: 19807682.
14.    Dipen Patel*, Sunita A. Chaudhary, Bhavesh Parmar, Nikunj Bhura. Transdermal Drug Delivery System: A Review. Pharma Innovation 2012; 1(4): 66-75.
15.    Sharma, Devender. (2017). Microneedles: an approach in transdermal drug delivery: a Review. 6. 10.29161/PT.v6.i1.2017.7
16.    Waghule T, Singhvi G, Dubey SK, Pandey MM, Gupta G, Singh M, Dua K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019; 109: 1249-1258. doi: 10.1016/ j.biopha.2018.10.078. Epub 2018 Nov 9. PMID: 30551375.
17.    Lakshmi Usha, M. Kusuma Kumari, E. Radha Rani, A.V.S. Ksheera Bhavani. A Novel Technique for Intra Transdermal Delivery of Drugs – Coated Polymeric Needles. Asian J. Pharm. Tech. 2020; 10(4): 289-295. doi: 10.5958/ 2231-5713.2020.00048.3
18.    Wermeling DP, Banks SL, Hudson DA, Gill HS, Gupta J, Prausnitz MR, Stinchcomb AL. Microneedles permit transdermal delivery of a skin-impermeant medication to humans. Proc Natl Acad Sci U S A. 2008 Feb 12; 105(6): 2058-63. doi: 10.1073/ pnas.0710355105. Epub 2008 Feb 4. PMID: 18250310; PMCID: PMC2538880.
19.    Hoang MT, Ita KB, Bair DA. Solid Microneedles for Transdermal Delivery of Amantadine Hydrochloride and Pramipexole Dihydrochloride. Pharmaceutics. 2015 Sep 28; 7(4): 379-96. doi: 10.3390/pharmaceutics7040379. PMID: 26426039; PMCID: PMC4695825.
20.    Smart WH, Subramanian K. The use of silicon microfabrication technology in painless blood glucose monitoring. Diabetes TechnolTher. 2000; 2(4): 549-59. doi: 10.1089/ 15209150050501961. PMID: 11469618.
21.    Gupta J, Park SS, Bondy B, Felner EI, Prausnitz MR. Infusion pressure and pain during microneedle injection into skin of human subjects. Biomaterials. 2011; 32(28): 6823-31. doi: 10.1016/ j.biomaterials.2011.05.061. Epub 2011 Jun 17. PMID: 21684001; PMCID: PMC3143217.
22.    Mansoor, I., Liu, Y., Häfeli, U., andStoeber, B. (2013). Arrays of hollow out-of-plane microneedles made by metal electrodeposition onto solvent cast conductive polymer structures. Journal of Micromechanics and Microengineering, 23, 085011.
23.    Shirkhanzadeh M. Microneedles coated with porous calcium phosphate ceramics: effective vehicles for transdermal delivery of solid trehalose. J Mater Sci Mater Med. 2005; 16(1): 37-45. doi: 10.1007/s10856-005-6444-2. PMID: 15754142.
24.    Cormier M, Johnson B, Ameri M, Nyam K, Libiran L, Zhang DD, Daddona P. Transdermal delivery of desmopressin using a coated microneedle array patch system. J Control Release. 2004 Jul 7; 97(3): 503-11. doi: 10.1016/j.jconrel.2004.04.003. PMID: 15212882.
25.    Jiang J, Gill HS, Ghate D, McCarey BE, Patel SR, Edelhauser HF, Prausnitz MR. Coated microneedles for drug delivery to the eye. Invest Ophthalmol Vis Sci. 2007; 48(9): 4038-43. doi: 10.1167/ iovs.07-0066. PMID: 17724185.
26.    Quinn HL, Bonham L, Hughes CM, Donnelly RF. Design of a Dissolving Microneedle Platform for Transdermal Delivery of a Fixed-Dose Combination of Cardiovascular Drugs. J Pharm Sci. 2015;104(10): 3490-500. doi: 10.1002/jps.24563. Epub 2015 Jul 6. PMID: 26149914.
27.    Park JH, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release. 2005 May 5; 104(1): 51-66. doi: 10.1016/j.jconrel.2005.02.002. Epub 2005 Apr 1. PMID: 15866334.
28.    Caffarel-Salvador E, Tuan-Mahmood TM, McElnay JC, McCarthy HO, Mooney K, Woolfson AD, Donnelly RF. Potential of hydrogel-forming and dissolving microneedles for use in paediatric populations. Int J Pharm. 2015 Jul 15; 489(1-2): 158-69. doi: 10.1016/j.ijpharm.2015.04.076. Epub 2015 May 1. PMID: 25940042.
29.    Zhu DD, Wang QL, Liu XB, Guo XD. Rapidly separating microneedles for transdermal drug delivery. Acta Biomater. 2016 Sep 1; 41: 312-9. doi: 10.1016/j.actbio.2016.06.005. Epub 2016 Jun 3. PMID: 27265152.
30.    Zhu Z, Luo H, Lu W, Luan H, Wu Y, Luo J, Wang Y, Pi J, Lim CY, Wang H. Rapidly dissolvable microneedle patches for transdermal delivery of exenatide. Pharm Res. 2014; 31(12): 3348-60. doi: 10.1007/s11095-014-1424-1. Epub 2014 May 28. PMID: 24867426.
31.    Wilke, N., Mulcahy, A., Ye, S., and Morrissey, A. (2005). Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectron. J., 36: 650-656.
32.    Larrañeta, E., Lutton, R. E. M., Woolfson, A. D., and Donnelly, R. F. (2016). Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Materials Science and Engineering: R: Reports, 104, 1 - 32. https://doi.org/10.1016/j.mser.2016.03.001
33.    M. A. Hopcroft, W. D. Nix and T. W. Kenny, "What is the Young's Modulus of Silicon?," in Journal of Microelectromechanical Systems, vol. 19, no. 2, pp. 229-238, April 2010, doi: 10.1109/JMEMS.2009.2039697.
34.    Donnelly RF, Raj Singh TR, Woolfson AD. Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety. Drug Deliv. 2010; 17(4): 187-207. doi: 10.3109/ 10717541003667798. PMID: 20297904; PMCID: PMC2906704.
35.    Gittard SD, Narayan RJ. Chapter 20, Applications of microneedle technology to transdermal drug delivery. Monteiro-Riviere NA, editor. Toxicology of the skin, 2010.
36.    Verbaan FJ, Bal SM, van den Berg DJ, Groenink WH, Verpoorten H, Lüttge R, Bouwstra JA. Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin. J Control Release. 2007 Feb 12; 117(2): 238-45. doi: 10.1016/ j.jconrel.2006.11.009. Epub 2006 Nov 17. PMID: 17196697.
37.    Niinomi M, Nakai M. Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone. Int J Biomater. 2011; 2011: 836587. doi: 10.1155/2011/836587. Epub 2011 Jun 22. PMID: 21765831; PMCID: PMC3132537.
38.    Gupta J, Felner EI, Prausnitz MR. Minimally invasive insulin delivery in subjects with type 1 diabetes using hollow microneedles. Diabetes TechnolTher. 2009; 11(6): 329-37. doi: 10.1089/dia.2008.0103. Erratum in: Diabetes TechnolTher. 2009; 11(7): 471. PMID: 19459760; PMCID: PMC2779563.
39.    Martanto W, Moore JS, Kashlan O, Kamath R, Wang PM, O'Neal JM, Prausnitz MR. Microinfusion using hollow microneedles. Pharm Res. 2006; 23(1): 104-13. doi: 10.1007/s11095-005-8498-8. Epub 2006 Nov 30. PMID: 16308670.
40.    Wang PM, Cornwell M, Hill J, Prausnitz MR. Precise microinjection into skin using hollow microneedles. J Invest Dermatol. 2006; 126(5): 1080-7. doi: 10.1038/sj.jid.5700150. PMID: 16484988.
41.    Finley J, Knabb J. Cutaneous silica granuloma. PlastReconstr Surg. 1982; 69(2): 340-3. doi: 10.1097/00006534-198202000-00029. PMID: 6275434.
42.    McGrath MG, Vucen S, Vrdoljak A, Kelly A, O'Mahony C, Crean AM, Moore A. Production of dissolvable microneedles using an atomised spray process: effect of microneedle composition on skin penetration. Eur J Pharm Biopharm. 2014; 86(2): 200-11. doi: 10.1016/j.ejpb.2013.04.023. Epub 2013 May 29. PMID: 23727511.
43.    Lee K, Lee CY, Jung H. Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials. 2011; 32(11): 3134-40. doi: 10.1016/ j.biomaterials.2011.01.014. Epub 2011 Feb 2. PMID: 21292317.
44.    Donnelly RF, Singh TR, Tunney MM, Morrow DI, McCarron PA, O'Mahony C, Woolfson AD. Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro. Pharm Res. 2009; 26(11): 2513-22. doi: 10.1007/s11095-009-9967-2. Epub 2009 Sep 11. PMID: 19756972; PMCID: PMC2900181.
45.    van Nieuwkasteele-Bystrova, S. N., andLüttge, R. (2011). Micromolding for ceramic microneedle arrays. Microelectronic engineering, 88(8): 1681-1684. https://doi.org/10.1016/ j.mee.2010.12.067, https://doi.org/10.1016/j.mrr.2010.12.067
46.    Theiss F, Apelt D, Brand B, Kutter A, Zlinszky K, Bohner M, Matter S, Frei C, Auer JA, von Rechenberg B. Biocompatibility and resorption of a brushite calcium phosphate cement. Biomaterials. 2005; 26(21): 4383-94. doi: 10.1016/ j.biomaterials.2004.11.056. PMID: 15701367.
47.    elestinaGorgieva and VanjaKokol (November 16th 2011). Collagen- vs. Gelatine-Based Biomaterials and Their Biocompatibility: Review and Perspectives, Biomaterials Applications for Nanomedicine, Rosario Pignatello, IntechOpen, DOI: 10.5772/24118. Available from: https:// www.intechopen.com/books/biomaterials-applications-for-nanomedicine/collagen-vs-gelatine-based-biomaterials-and-their-biocompatibility-review-and-perspectives.
48.    Kim JY, Han MR, Kim YH, Shin SW, Nam SY, Park JH. Tip-loaded dissolving microneedles for transdermal delivery of donepezil hydrochloride for treatment of Alzheimer's disease. Eur J Pharm Biopharm. 2016; 105: 148-55. doi: 10.1016/ j.ejpb.2016.06.006. Epub 2016 Jun 8. PMID: 27288938.
49.    Katsumi H, Liu S, Tanaka Y, Hitomi K, Hayashi R, Hirai Y, Kusamori K, Quan YS, Kamiyama F, Sakane T, Yamamoto A. Development of a novel self-dissolving microneedle array of alendronate, a nitrogen-containing bisphosphonate: evaluation of transdermal absorption, safety, and pharmacological effects after application in rats. J Pharm Sci. 2012; 101(9): 3230-8. doi: 10.1002/jps.23136. Epub 2012 Mar 29. PMID: 22467424.
50.    Luangveera W, Jiruedee S, Mama W, Chiaranairungroj M, Pimpin A, Palaga T, Srituravanich W. Fabrication and characterization of novel microneedles made of a polystyrene solution. J Mech Behav Biomed Mater. 2015; 50: 77-81. doi: 10.1016/ j.jmbbm.2015.06.009. Epub 2015 Jun 20. PMID: 26116955.
51.    Caffarel-Salvador E, Tuan-Mahmood TM, McElnay JC, McCarthy HO, Mooney K, Woolfson AD, Donnelly RF. Potential of hydrogel-forming and dissolving microneedles for use in paediatric populations. Int J Pharm. 2015 Jul 15; 489(1-2): 158-69. doi: 10.1016/j.ijpharm.2015.04.076. Epub 2015 May 1. PMID: 25940042.
52.    Park JH, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release. 2005 May 5; 104(1): 51-66. doi: 10.1016/j.jconrel.2005.02.002. Epub 2005 Apr 1. PMID: 15866334.
53.    Swapnali A. Mohite, R. R. Vakhariya, S. K. Mohite, C. S. Magdum. Polymers used in Drug Delivery System: An Overview. Res. J. Pharma. Dosage Forms and Tech. 2019; 11(2): 111-115. doi: 10.5958/0975-4377.2019.00017.X
54.    Donnelly RF, Singh TR, Alkilani AZ, McCrudden MT, O'Neill S, O'Mahony C, Armstrong K, McLoone N, Kole P, Woolfson AD. Hydrogel-forming microneedle arrays exhibit antimicrobial properties: potential for enhanced patient safety. Int J Pharm. 2013 Jul 15; 451(1-2): 76-91. doi: 10.1016/j.ijpharm.2013.04.045. Epub 2013 May 1. PMID: 23644043; PMCID: PMC4119957.
55.    Yogita R. Indalkar, Nayana V. Pimpodkar, Puja S. Gaikwad, Anita S. Godase. A Comprehensive Review on Biodegradable Polymers. Asian J. Res. Pharm. Sci. 2016; 6(2): 65-76 doi: 10.5958/2231-5659.2016.00010.2
56.    Dharadhar S, Majumdar A, Dhoble S, Patravale V. Microneedles for transdermal drug delivery: a systematic review. Drug Dev Ind Pharm. 2019; 45(2): 188-201. doi: 10.1080/ 03639045.2018.1539497. Epub 2018 Nov 27. PMID: 30348022.
57.    S. More, T. Ghadge, S. Dhole. Microneedle: an Advanced Technique in Transdermal Drug Delivery System. Asian J. Res. Pharm. Sci. 2013; 3(3): 141-148
58.    Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug Deliv Rev. 2004 Mar 27; 56(5): 581-7. doi: 10.1016/ j.addr.2003.10.023. PMID: 15019747.
59.    Wang PM, Cornwell M, Prausnitz MR. Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles. Diabetes TechnolTher. 2005; 7(1): 131-41. doi: 10.1089/dia.2005.7.131. PMID: 15738711.
60.    Bora, Pushpakand Kumar, Lokesh and Bansal, Arvind. (2008). Microneedle technology for advanced drug delivery: Evolving vistas. Curr. Res. Inf. Pharm. Sci.9.
61.    Kumar V, Kulkarni P, Raut R, Microneedle: Promising technique for transdermal drug delivery, International Journal of Pharma and Biosciences, 2011; 2(1): 684-708.
62.    Milewski M, Brogden NK, Stinchcomb AL. Current aspects of formulation efforts and pore lifetime related to microneedle treatment of skin. Expert Opin Drug Deliv. 2010; 7(5): 617-29. doi: 10.1517/17425241003663228. PMID: 20205604; PMCID: PMC2858255.
63.    Manoj, V.R. and Manoj, H. 2019. Review on Transdermal microneedle-based drug delivery. Asian Journal of Pharmaceutical and Clinical Research. 12, 1 (Jan. 2019), 18-29. DOI: https://doi.org/10.22159/ ajpcr.2019.v12i1.27434
64.    Kanikkannan N, Singh J, Ramarao P. In vitro transdermal iontophoretic transport of timolol maleate: effect of age and species. J Control Release. 2001 Mar 12; 71(1): 99-105. doi: 10.1016/s0168-3659(01)00208-5. PMID: 11245911.
65.    Meidan VM, Michniak BB. Emerging technologies in transdermal therapeutics. Am J Ther. 2004; 11(4): 312-6. doi: 10.1097/ 01.mjt.0000101826.94820.6b. PMID: 15266225.
66.    Li J, Zeng M, Shan H, Tong C. Microneedle Patches as Drug and Vaccine Delivery Platform. Curr Med Chem. 2017; 24(22): 2413-2422. doi: 10.2174/0929867324666170526124053. PMID: 28552053.
67.    Singh A, Yadav S. Microneedling: Advances and widening horizons. Indian Dermatol Online J. 2016; 7(4): 244-54. doi: 10.4103/2229-5178.185468. PMID: 27559496; PMCID: PMC4976400.
68.    Pearton M, Saller V, Coulman SA, Gateley C, Anstey AV, Zarnitsyn V, Birchall JC. Microneedle delivery of plasmid DNA to living human skin: Formulation coating, skin insertion and gene expression. J Control Release. 2012 Jun 28; 160(3): 561-9. doi: 10.1016/j.jconrel.2012.04.005. Epub 2012 Apr 10. PMID: 22516089; PMCID: PMC3390019.

Recomonded Articles:

Author(s): Priyanka M. Salve, Shital V. Sonawane, Mayuri B. Patil, Rajendra K. Surawase

DOI: 10.52711/2231-5659.2021.00037         Access: Open Access Read More

Author(s): Yogita R. Indalkar, Nayana V. Pimpodkar, Puja S. Gaikwad, Anita S. Godase

DOI: 10.5958/2231-5659.2016.00010.2         Access: Open Access Read More

Author(s): G. Vasavi, P. Naga Haritha, B. Chandrashekar

DOI: 10.5958/2231-5659.2018.00021.8         Access: Open Access Read More

Author(s): Sarika V. Khandbahale, Saudagar R. B.

DOI:         Access: Open Access Read More

Author(s): Rajendra Jangde

DOI:         Access: Open Access Read More

Author(s): S. More, T. Ghadge, S. Dhole

DOI:         Access: Open Access Read More

Author(s): Neha Sharma, Tarun Kumar Sharma, Vinay Pandit, M. S Ashawat

DOI: 10.52711/2231-5659.2021-11-2-4         Access: Open Access Read More

Author(s): A. Lakshmi Usha, M. Kusama Kumari, E. Radha Rani, M. Ramadevi

DOI: 10.52711/2231-5659.2021-11-2-7         Access: Open Access Read More

Author(s): Jadhav Sandhya, S. S. Siddheshwar

DOI: 10.52711/2231-5659.2024.00024         Access: Closed Access Read More

Asian Journal of Research in Pharmaceutical Sciences (AJPSci) is an international, peer-reviewed journal, devoted to pharmaceutical sciences....... Read more >>>

RNI: Not Available                     
DOI: 10.52711/2231-5659 


Recent Articles




Tags