1.
Bourlais
CL, Acar L, Zia H, Sado PA, Needham T, Leverge R: Ophthalmic drug delivery
systems-- recent advances. Prog Retin Eye Res 1998; 17:33–58.
2.
Gulsen
D, Chauhan A: Ophthalmic drug delivery through contact lenses. Invest
Ophthalmol Vis Sci 2004; 45:2342–2347.
3.
K.
Cholkar, S.P. Patel, A.D. Vadlapudi, A.K. Mitra: Novel strategies for anterior
segment ocular drug delivery, J. Ocul. Pharmacol. Ther 2013; 29:106–123
4.
Patel
Ashaben, Cholkar Kishore, Agrahari Vibhuti, and Mitra Ashim K: Ocular drug
delivery systems: An Overview. World Journal Pharmacol. 2013; 2(2):47–64.
5.
Chen, H., Jin, Y., Sun,
L., Li, X., Nan, K., Liu, H. Wang, B: Recent
developments in ophthalmic drug delivery systems for therapy of both anterior
and posterior segment diseases 2018.
6.
Cholka
Kishorer, Reddy Dasari
Supriya Dhananjay Pal Ashim, K. Mitra. Eye: Anatomy, physiology and barriers to drug
delivery 2013: 1-36.
7.
Author
links open overlay panelLee AnnRemingtonOD,
MS, FAAO:
Clinical Anatomy and Physiology of the Visual System 2012; 3:10-39.
8.
Urtti
A. (Challenges and obstacles of ocular pharmacokinetics and drug delivery):
Advanced. Drug Delivery: Review 2006; 58:1131–35.
9. D. Dabir Priyanka,
Dr. Shahi S. R. and. Deore Swati V: Opthalmic In Situ Gel: A Review. European
Journal Pharmaceutical and Medical Research 2016; 3(6):205-215.
10.
Abdulrazik
M, Beher-Cohen F, Benita S: Drug-delivery systems for enhanced ocular
absorption. In: Enhancement in Drug Delivery. Touitou E, Barry BW (Eds). CRC
Press, FL, USA 2007: 489–525.
11.
Souza,
J.G., Dias, K., Pereira, T.A., Bernardi, D.S., and Lopez, R.F: Topical delivery
of ocular therapeutics: carrier systems and physical methods. J. Pharm.
Pharmacol 2014; 66:507–530.
12.
Ruponen,
M., and Urtti, A: Undefined role of mucus as a barrier in ocular drug delivery.
Eur. J. Pharm. Biopharm 2015; 96:442–446.
13.
Saettone
MF, Chetoni P, Cerbai R, Mazzanti G, Braghiroli L: Evaluation of ocular
permeation enhancers: in vitro effects on corneal transport of four
beta-blockers, and in vitro/in vivo toxic activity. Int J Pharm 1996;
142:103–113.
14.
Vulovic
N, Primorac M, Stupar M, Brown MW, Ford JL: Some studies on the preservation of
indometacin suspensions intended for ophthalmic use. Pharmazie 1990;
45:678–679.
15.
Hornof
MD, Bernkop-Schnürch A: In vitro evaluation of the permeation enhancing effect
of polycarbophil-cysteine conjugates on the cornea of rabbits. J Pharm Sci
2002; 91:2588– 2592.
16.
Gote
Vrinda, BS, BS Sadia Sikder: Ocular Drug Delivery: Present Innovations and
Future Challenges 2019.
17.
Djamila
Achouri, Kamel Alhanout, Philippe Piccerelle: Recent advanced in ocular drug
delivery Ocular drug delivery 2012 :1-9.
18. Vandamme, T.F:
Microemulsions as ocular drug delivery systems: Recent developments and future
challenges. Prog. Retin. Eye Res 2002; 21:15–34.
19. Tiwari, R.; Pandey,
V.; Asati, S.; Soni, V.; Jain, D: Therapeutic challenges in ocular delivery of
lipid based emulsion. Egypt. J. Basic Appl. Sci 2018;5: 121–129.
20.
Tamilvanan,
S.; Benita, S: The potential of lipid emulsion for ocular delivery of
lipophilic drugs. Eur. J. Pharm. Biopharm 2004; 78:357–368.
21.
Tajika
T, Isowaki A, Sakaki H: Ocular distribution of difluprednate ophthalmic
emulsion 0. 05% in rabbits. J Ocul Pharmacol Ther 2011; 27:43–49.
22. Yellepeddi, V. K., & Palakurthi,
S: Recent Advances in Topical Ocular
Drug Delivery. Journal of Ocular Pharmacology and Therapeutics 2016; 32(2): 67–82.
23.
Lang,
J.; Roehrs, R.; Jani, R. Remington: The Science and Practice of Pharmacy.
Philadelphia: Lippincott Williams & Wilkins. Ophthalmic preparations 2009
:856.
24.
Peng,
C.C, Bengani L.C, Jung, H.J: Emulsions and microemulsions for ocular drug delivery.
J. Drug Deliv. Sci. Technol 2011; 21:111–121.
25.
Sasaki
H, Yamamura K, Mukai T, Nishida K, Nakamura J, Nakashima M, Ichikawa M:
Enhancement of ocular drug penetration. Crit Rev Ther Drug Carrier Syst 1999;
16:85– 146.
26.
Eguchi
H, Shiota H, Oguro S, Kasama T: The inhibitory effect of vancomycin ointment on
the manifestation of MRSA keratitis in rabbits. J Infect Chemother 2001;
15:279–283.
27.
Fukuda
M, Hanazome I, Sasaki K: The intraocular dynamics of vancomycin hydrochloride
ophthalmic ointment (TN-011) in rabbits. J Infect Chemother 2003; 9:93–96.
28.
Vadlapudi,
A.D.; Mitra, A.K. Nanomicelles: An emerging platform for drug delivery to the
eye. Ther. Deliv 2013; 4:1–3.
29.
Trinh,
H.M, Joseph, M.; Cholkar, K: Nanomicelles in Diagnosis and Drug Delivery. In
Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices;
Mitra, A, Cholkar, K, Mandal, A, Eds; Elsevier: Boston, MA, US 2017.
30.
Singh Pawan and Verma
Navneet: A review on impact of nanomicelle for ocular
drug delivery system 2016; 23(8):2897-2901.
31.
Tong,
Y.C, Chang, S.F, Liu, C.Y, Kao, W.W, Huang, C.H Liaw, J: Eye drop delivery of
nano-polymeric micelle formulated genes with cornea-specific promoters. J. Gene
Med 2007; 9: 956–966.
32.
Cholkar
K, Patel A, Vadlapudi DA, Mitra AK: Novel nanomicellar formulation approaches
for anterior and posterior segment ocular drug delivery. Recent patents on
nanomedicine 2012; 2: 82–95.
33.
Civiale,
C. Licciardi, M. Cavallaro, C. Giammona, G. Mazzone, M.G:
Polyhydroxyethylaspartamide-based micelles for ocular drug delivery. Int. J.
Pharm 2009; 378, 177–186.
34.
Tong,
Y.C. Chang, S.F. Liu, C.Y. Kao, W.W. Huang, C.H. Liaw, J: Eye drop delivery of
nano-polymeric micelle formulated genes with cornea-specific promoters. J. Gene
Med 2007; 9: 956–966.
35.
Dash
AK, Cudworth GC: Therapeutic application of implantable drug delivery systems.
J Pharmacol Toxicol Methods 1998; 10:1-12.
36.
Fialho
SL, Rego MGB, Cardillo JA, et al: Implantes biodegradáveis destinados à
administração intra-ocular. Arq Bras Oftalmol 2003; 6:891-896.
37.
Okabe
J, Kimura H, Kunou N, Okabe K, Kato A: Biodegradable Intrascleral Implant for
Sustained Intraocular Delivery of Betamethasone Phosphate. Invest Ophthalmol
Vis Sci 2003; 44:740-744.
38.
Manda
P, Kushwaha AS, Kundu S: Delivery of ziconotide to cerebrospinal fluid via
intranasal pathway for the treatment of chronic pain. J Control Release 2006;
224:69-76.
39.
Dong
X, Chen N, Xie L, et al: Prevention of experimental proliferative
vitreoretinopathy with a biodegradable intravitreal drug delivery system of
all-trans retinoic acid. Retina 2006; 26:210-213.
40.
Cheng
CK, Berger AS, Pearson PA, et al: Intravitreal sustained-release dexamethasone
device in the treatment of experimental Uveitis. Invest Ophthalmol Vis Sci.
1995; 36:442-453.
41.
Abhirup
Mandal, A.; Gote, V.; Pal, D.; Oguandele, A.; Mitr, A: Ocular Pharmacokinetics
of a Topical Ophthalmic Nanomicellar Solution of Cyclosporine (Cequa®) for Dry
Eye Disease. Pharm. Res 2019; 36:4–21.
42.
Moffatt, K. Wang, Y, Raj
Singh, T. R, & Donnelly: Microneedles
for enhanced intraocular drug delivery. Current Opinion in Pharmacology 2017; 36:14-21.
43.
Jiang
J, Gill HS, Ghate D, McCarey BE, Patel SR, Edelhauser HF, Prausnitz MR: Coated
microneedles for drug delivery to the eye. Invest Ophthalmol Vis Sci 2007;
48:4038-4043.
44.
Patel,
S, Berezovsky, E, Berezovsky, D.E, McCarey, B.E, Zarnitsyn, V, Edelhauser, H.F,
Prausnit, M.R: Targeted Administration into the Suprachoroidal Space Using a
Microneedle for Drug Delivery to the Posterior Segment of the Eye. Inv. Ophth.
Vis. Sci 2012; 53: 4433–4441.
45.
Patel
SR, Lin AS, Edelhauser HF, Prausnitz MR: Suprachoroidal drug delivery to the
back of the eye using hollow microneedles. Pharm Res 2011; 28:166–176.
46.
Song
HB, Lee KJ, Ho Seo, et al: Impact insertion of transfer-molded microneedle for
localized and minimally invasive ocular drug delivery. J Control Rel 2015;
209:272–9.
47.
Gupta
H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G: Biodegradable levofloxacin
nanoparticles for sustained ocular drug delivery. J Drug Target 2011; 19:409–
417.
48.
Parveen
S, Mitra M, Krishnakumar S, Sahoo SK: Enhanced antiproliferative activity of
carboplatin-loaded chitosan-alginate nanoparticles in a retinoblastoma cell
line. Acta Biomater 2010; 6:3120–3131.
49.
Khan,
I, Saeed, K, Khan, I: Nanoparticles: Properties, applications and toxicities.
Arabian J. Chem 2019; 12 (7): 908-931.
50.
Vasconcelos,
A, Vega, E, Perez, Y, Gomara, M.J, García, M.L, Haro, I: Conjugation of
cell-penetrating peptides with poly (lactic-co-glycolic acid)-polyethylene
glycol nanoparticles improves ocular drug delivery. Int. J. Nanomed 2015;
10:609–613.
51.
Bu
HZ, Gukasyan HJ, Goulet L, Lou XJ, Xiang C, Koudriakova T: Ocular disposition,
pharmacokinetics, efficacy and safety of nanoparticle-formulated ophthalmic
drugs. Curr Drug Metab 2007; 8:91–107.
52.
Zhang
L, Li Y, Zhang C, Wang Y, Song C: Pharmacokinetics and tolerance study of
intravitreal injection of dexamethasone-loaded nanoparticles in rabbits. Int J
Nanomedicine 2009; 4:175–183.
53.
Musumeci,
T, Bucolo, C, Carbone, C, Pignatello, R, Drago, F, Puglisi, G: Polymeric
nanoparticles augment the ocular hypotensive effect of melatonin in rabbits.
Int. J. Pharm 2013; 440:135–140.
54.
Suganya
V, Anuradha V: Microencapsulation and nanoencapsulation: a review. IJPCR 2017;
9:233–239.
55.
Kaur
IP, Garg A, Singla AK, Aggarwal D: Vesicular systems in ocular drug delivery:
an overview. Int J Pharm 2004; 269:1–14.
56.
Allison
SD: Liposomal drug delivery. Journal of infusion nursing: the official
publication of the Infusion Nurses Society 2007; 30(2):89-95
57.
Natarajan
JV, Ang M, Darwitan A, Chattopadhyay S, Wong TT, Venkatraman SS: Nanomedicine
for glaucoma: liposomes provide sustained release of latanoprost in the eye.
Int J of nanomedicine 2012; 7:123-31.
58.
F.A.
de Sa, S.F. Taveira, G.M. Gelfuso, E.M. Lima, T. Gratieri, Liposomal
voriconazole (VOR) formulation for improved ocular delivery, Colloids Surf. B:
Biointerfaces 2015; 133:331–338.
59.
Natarajan,
J.V, Ang, M, Darwitan, A, Chattopadhyay, S, Wong, T.T, Venkatraman, S.S:
Nanomedicine for glaucoma: Liposomes provide sustained release of latanoprost
in the eye. Int. J. Nanomed 2012; 7:123–131.
60.
Taha,
E.I, El-Anazi, M.H, El-Bagory, I.M, Bayomi, M.A: Design of liposomal colloidal
systems for ocular delivery of ciprofloxacin. Saudi Pharm. J 2014; 22: 231–239.
61.
Villasmil-Sánchez,
S. Drhimeur, W, Ospino, S.C.S, Rabasco Alvarez, A.M, González-Rodríguez, M.L:
Positively and negatively charged liposomes as carriers for transdermal
delivery of sumatriptan: In vitro characterization. Drug Dev. Ind. Pharm 2010;
36:666–675.
62.
Law
SL, Huang KJ, Chiang CH: Acyclovir-containing liposomes for potential ocular
delivery. Corneal penetration and absorption. J Control Release 2000;
63:135–140.
63.
Nicolosi
D, Cupri S, Genovese C, et al: Nanotechnology approaches for antibacterial drug
delivery: preparation and microbiological evaluation of fusogenic liposomes
carrying fusidic acid. Antimicrob Agents 2015; 45:622–6.
64.
Kambhampati
SP, Kannan R: Dendrimer nanoparticles for ocular drug delivery. J Ocul
Pharmacol Ther 2013; 29:151–65.
65.
Desai
PN, Yang: Synthesis and characterization of photocurable polyionic hydrogels.
Mater Res Soc Symp Proc 2008; 1095:1095.
66.
O.
Milhem, C. Myles, N. McKeown, D. Attwood, A. D'Emanuele: Polyamidoamine
starburst dendrimers as solubility enhancers, Int. J. Pharm 2000: 239–241.
67.
Michael G. Lancina, III1
and Hu Yang:
Dendrimers for Ocular Drug Delivery Can J Chem 2017;
95(9): 897–902.
68.
Vandamme
TF, Brobeck L: Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular
delivery of pilocarpine nitrate and tropicamide. J Control Release 2005;
102:23–38.
69.
Kandekar
Y, Chaudhari PD, Tambe VS, et al:
Dendrimers: Novel Drug Nanocarriers. International Journal of Pharmaceutical
Sciences and Research (IJPSR) 2011; 2:1086–98.
70.
Rajoria
G, Gupta A: In-Situ Gelling System: A Novel Approach for Ocular Drug Delivery.
AJPTR 2012; 2:24–53.
71.
Bonacucina
G, Cespi M, Mencarelli G, Giorgioni G, Palmieri GF: Thermosensitive Self
Assembling Block Copolymers as Drug Delivery Systems. Polymers 2011; 3:779–811
72.
Gratieri
T, Gelfuso GM, Rocha EM, Sarmento VH: A poloxamer/chitosan in situ forming gel
with prolonged retention time for ocular delivery. Eur J Pharm Biopharm 2010;
75(2):186-93.
73.
Al-Khateb
K, Ozhmukhametova EK, Mussin MN, Seilkhanov SK, Rakhypbekov TK, Lau WM, et al:
In situ gelling systems based on Pluronic F127/Pluronic F68 formulations for
ocular drug delivery. Int J Pharm 2016; 502 (1-2):70-91
74.
Cholkar,
K, Patel, S.P, Vadlapudi, A.D, Mitra, A.K: Novel Strategies for Anterior
Segment Ocular Drug Delivery. J. Ocul. Pharmacol. Ther 2013; 29:106–123.
75.
Sanchez-Lopez,
E, Espina, M, Doktorovova, S, Souto, E.B, Garcia, M.L: Lipid nanoparticles
(SLN, NLC): Overcoming the anatomical and physiological barriers of the
eye—Part II—Ocular drug-loaded lipid nanoparticles. Eur. J. Pharm. Biopharm
2017; 110:58–69.
76.
Osswald
CR, Guthrie MJ, Avila A, Valio JJ, Mieler WF, Kang-Mieler JJ: In vivo efficacy
of an injectable microsphere-hydrogel ocular drug delivery system. Curr Eye Res
2017; 42(9):1293–301.
77.
Aranguez
Ana Guzman, Colligris Basilio, and Pintor Jesu´ s: Contact Lenses: Promising
devices for ocular drug delivery j. Ocul. Pharmacol. Ther 2013; 29(2).
78.
Ashaben
Patel, Kishore Cholkar, Vibhuti Agrahari and Ashim K Mitra: Ocular drug
delivery systems: An overview. World J Pharmacol 2013; 2(2): 47–64.
79.
Kim
J, Chauhan A: Dexamethasone transport and ocular delivery from poly (hydroxyethyl
methacrylate) gels. Int J Pharm 2008; 353:205–222.