Author(s): Aprajita Shifali, Pravin Kumar, Vinay Pandit

Email(s): Shifaliaprajita1991@gmail.com

DOI: 10.5958/2231-5659.2021.00012.6   

Address: Aprajita Shifali, Pravin Kumar, Vinay Pandit
Department of Pharmaceutics, Laureate Institute of Pharmacy, Kathog, H.P, India.
*Corresponding Author

Published In:   Volume - 11,      Issue - 1,     Year - 2021


ABSTRACT:
Ocular drug delivery system is used to treat the eye diseases or eye infection that is caused by different reasons. There are many eye ailments such as keratomycosis, orbital cellulitis, endophthalmitis, allergic conjuctivitis that affects the eye. There are many limitations of conventional ocular drug delivery systems such as rapid elimination of drug, lachrymal drainage, and limited permeability to cornea leading to low bioavailability. To overcome these problems the novel approaches of drug delivery systems comes in rescue. Ophthalmic insitu gels are used to increase the retention time of drug within eye. Opthalmic insitu gels are the viscous polymer-based liquids applied as solutions or suspensions that exhibit sol-to-gel phase transition when come in contact with the eye due to change in a specific physicochemical system such as pH and temperature induced insitu gel systems. This is very effective in emergency therapy. It delivers the drug to target site and prevents the drug from loss by reaching the drug to other ocular tissues. This approach attains a great attention in increasing bioavailability of drug by increasing the corneal contact time due to its rheological and mucoadhesive properties. Further, self medication is possible with improved patient compliance.


Cite this article:
Aprajita Shifali, Pravin Kumar, Vinay Pandit. Recent trends in Ocular Drug Delivery System: A Review. Asian J. Res. Pharm. Sci. 2021; 11(1):71-80. doi: 10.5958/2231-5659.2021.00012.6

Cite(Electronic):
Aprajita Shifali, Pravin Kumar, Vinay Pandit. Recent trends in Ocular Drug Delivery System: A Review. Asian J. Res. Pharm. Sci. 2021; 11(1):71-80. doi: 10.5958/2231-5659.2021.00012.6   Available on: https://ajpsonline.com/AbstractView.aspx?PID=2021-11-1-12


1.      Bourlais CL, Acar L, Zia H, Sado PA, Needham T, Leverge R: Ophthalmic drug delivery systems-- recent advances. Prog Retin Eye Res 1998; 17:33–58.

2.      Gulsen D, Chauhan A: Ophthalmic drug delivery through contact lenses. Invest Ophthalmol Vis Sci 2004; 45:2342–2347.

3.      K. Cholkar, S.P. Patel, A.D. Vadlapudi, A.K. Mitra: Novel strategies for anterior segment ocular drug delivery, J. Ocul. Pharmacol. Ther 2013; 29:106–123

4.      Patel Ashaben, Cholkar Kishore, Agrahari Vibhuti, and Mitra Ashim K: Ocular drug delivery systems: An Overview. World Journal Pharmacol. 2013; 2(2):47–64.

5.      Chen, H., Jin, Y., Sun, L., Li, X., Nan, K., Liu, H. Wang, B: Recent developments in ophthalmic drug delivery systems for therapy of both anterior and posterior segment diseases 2018.

6.      Cholka Kishorer, Reddy Dasari Supriya Dhananjay Pal Ashim, K. Mitra. Eye: Anatomy, physiology and barriers to drug delivery 2013: 1-36.

7.      Author links open overlay panelLee AnnRemingtonOD, MS, FAAO: Clinical Anatomy and Physiology of the Visual System 2012; 3:10-39.

8.      Urtti A. (Challenges and obstacles of ocular pharmacokinetics and drug delivery): Advanced. Drug Delivery: Review 2006; 58:1131–35.

9.      D. Dabir Priyanka, Dr. Shahi S. R. and. Deore Swati V: Opthalmic In Situ Gel: A Review. European Journal Pharmaceutical and Medical Research 2016; 3(6):205-215.

10.   Abdulrazik M, Beher-Cohen F, Benita S: Drug-delivery systems for enhanced ocular absorption. In: Enhancement in Drug Delivery. Touitou E, Barry BW (Eds). CRC Press, FL, USA 2007: 489–525.

11.   Souza, J.G., Dias, K., Pereira, T.A., Bernardi, D.S., and Lopez, R.F: Topical delivery of ocular therapeutics: carrier systems and physical methods. J. Pharm. Pharmacol 2014; 66:507–530.

12.   Ruponen, M., and Urtti, A: Undefined role of mucus as a barrier in ocular drug delivery. Eur. J. Pharm. Biopharm 2015; 96:442–446.

13.   Saettone MF, Chetoni P, Cerbai R, Mazzanti G, Braghiroli L: Evaluation of ocular permeation enhancers: in vitro effects on corneal transport of four beta-blockers, and in vitro/in vivo toxic activity. Int J Pharm 1996; 142:103–113.

14.   Vulovic N, Primorac M, Stupar M, Brown MW, Ford JL: Some studies on the preservation of indometacin suspensions intended for ophthalmic use. Pharmazie 1990; 45:678–679.

15.   Hornof MD, Bernkop-Schnürch A: In vitro evaluation of the permeation enhancing effect of polycarbophil-cysteine conjugates on the cornea of rabbits. J Pharm Sci 2002; 91:2588– 2592.

16.   Gote Vrinda, BS, BS Sadia Sikder: Ocular Drug Delivery: Present Innovations and Future Challenges 2019.

17.   Djamila Achouri, Kamel Alhanout, Philippe Piccerelle: Recent advanced in ocular drug delivery Ocular drug delivery 2012 :1-9.

18.   Vandamme, T.F: Microemulsions as ocular drug delivery systems: Recent developments and future challenges. Prog. Retin. Eye Res 2002; 21:15–34.

19.   Tiwari, R.; Pandey, V.; Asati, S.; Soni, V.; Jain, D: Therapeutic challenges in ocular delivery of lipid based emulsion. Egypt. J. Basic Appl. Sci 2018;5: 121–129.

20.   Tamilvanan, S.; Benita, S: The potential of lipid emulsion for ocular delivery of lipophilic drugs. Eur. J. Pharm. Biopharm 2004; 78:357–368.

21.   Tajika T, Isowaki A, Sakaki H: Ocular distribution of difluprednate ophthalmic emulsion 0. 05% in rabbits. J Ocul Pharmacol Ther 2011; 27:43–49.

22.   Yellepeddi, V. K., & Palakurthi, S: Recent Advances in Topical Ocular Drug Delivery. Journal of Ocular Pharmacology and Therapeutics 2016; 32(2): 67–82.

23.   Lang, J.; Roehrs, R.; Jani, R. Remington: The Science and Practice of Pharmacy. Philadelphia: Lippincott Williams & Wilkins. Ophthalmic preparations 2009 :856.

24.   Peng, C.C, Bengani L.C, Jung, H.J: Emulsions and microemulsions for ocular drug delivery. J. Drug Deliv. Sci. Technol 2011; 21:111–121.

25.   Sasaki H, Yamamura K, Mukai T, Nishida K, Nakamura J, Nakashima M, Ichikawa M: Enhancement of ocular drug penetration. Crit Rev Ther Drug Carrier Syst 1999; 16:85– 146.

26.   Eguchi H, Shiota H, Oguro S, Kasama T: The inhibitory effect of vancomycin ointment on the manifestation of MRSA keratitis in rabbits. J Infect Chemother 2001; 15:279–283.

27.   Fukuda M, Hanazome I, Sasaki K: The intraocular dynamics of vancomycin hydrochloride ophthalmic ointment (TN-011) in rabbits. J Infect Chemother 2003; 9:93–96.

28.   Vadlapudi, A.D.; Mitra, A.K. Nanomicelles: An emerging platform for drug delivery to the eye. Ther. Deliv 2013; 4:1–3.

29.   Trinh, H.M, Joseph, M.; Cholkar, K: Nanomicelles in Diagnosis and Drug Delivery. In Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices; Mitra, A, Cholkar, K, Mandal, A, Eds; Elsevier: Boston, MA, US 2017.

30.   Singh Pawan and Verma Navneet: A review on impact of nanomicelle for ocular drug delivery system 2016; 23(8):2897-2901.

31.   Tong, Y.C, Chang, S.F, Liu, C.Y, Kao, W.W, Huang, C.H Liaw, J: Eye drop delivery of nano-polymeric micelle formulated genes with cornea-specific promoters. J. Gene Med 2007; 9: 956–966.

32.   Cholkar K, Patel A, Vadlapudi DA, Mitra AK: Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent patents on nanomedicine 2012; 2: 82–95.

33.   Civiale, C. Licciardi, M. Cavallaro, C. Giammona, G. Mazzone, M.G: Polyhydroxyethylaspartamide-based micelles for ocular drug delivery. Int. J. Pharm 2009; 378, 177–186.

34.   Tong, Y.C. Chang, S.F. Liu, C.Y. Kao, W.W. Huang, C.H. Liaw, J: Eye drop delivery of nano-polymeric micelle formulated genes with cornea-specific promoters. J. Gene Med 2007; 9: 956–966.

35.   Dash AK, Cudworth GC: Therapeutic application of implantable drug delivery systems. J Pharmacol Toxicol Methods 1998; 10:1-12.

36.   Fialho SL, Rego MGB, Cardillo JA, et al: Implantes biodegradáveis destinados à administração intra-ocular. Arq Bras Oftalmol 2003; 6:891-896.

37.   Okabe J, Kimura H, Kunou N, Okabe K, Kato A: Biodegradable Intrascleral Implant for Sustained Intraocular Delivery of Betamethasone Phosphate. Invest Ophthalmol Vis Sci 2003; 44:740-744.

38.   Manda P, Kushwaha AS, Kundu S: Delivery of ziconotide to cerebrospinal fluid via intranasal pathway for the treatment of chronic pain. J Control Release 2006; 224:69-76.

39.   Dong X, Chen N, Xie L, et al: Prevention of experimental proliferative vitreoretinopathy with a biodegradable intravitreal drug delivery system of all-trans retinoic acid. Retina 2006; 26:210-213.

40.   Cheng CK, Berger AS, Pearson PA, et al: Intravitreal sustained-release dexamethasone device in the treatment of experimental Uveitis. Invest Ophthalmol Vis Sci. 1995; 36:442-453.

41.   Abhirup Mandal, A.; Gote, V.; Pal, D.; Oguandele, A.; Mitr, A: Ocular Pharmacokinetics of a Topical Ophthalmic Nanomicellar Solution of Cyclosporine (Cequa®) for Dry Eye Disease. Pharm. Res 2019; 36:4–21.

42.   Moffatt, K. Wang, Y, Raj Singh, T. R, & Donnelly: Microneedles for enhanced intraocular drug delivery. Current Opinion in Pharmacology 2017; 36:14-21.

43.   Jiang J, Gill HS, Ghate D, McCarey BE, Patel SR, Edelhauser HF, Prausnitz MR: Coated microneedles for drug delivery to the eye. Invest Ophthalmol Vis Sci 2007; 48:4038-4043.

44.   Patel, S, Berezovsky, E, Berezovsky, D.E, McCarey, B.E, Zarnitsyn, V, Edelhauser, H.F, Prausnit, M.R: Targeted Administration into the Suprachoroidal Space Using a Microneedle for Drug Delivery to the Posterior Segment of the Eye. Inv. Ophth. Vis. Sci 2012; 53: 4433–4441.

45.   Patel SR, Lin AS, Edelhauser HF, Prausnitz MR: Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharm Res 2011; 28:166–176.

46.   Song HB, Lee KJ, Ho Seo, et al: Impact insertion of transfer-molded microneedle for localized and minimally invasive ocular drug delivery. J Control Rel 2015; 209:272–9.

47.   Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G: Biodegradable levofloxacin nanoparticles for sustained ocular drug delivery. J Drug Target 2011; 19:409– 417.

48.   Parveen S, Mitra M, Krishnakumar S, Sahoo SK: Enhanced antiproliferative activity of carboplatin-loaded chitosan-alginate nanoparticles in a retinoblastoma cell line. Acta Biomater 2010; 6:3120–3131.

49.   Khan, I, Saeed, K, Khan, I: Nanoparticles: Properties, applications and toxicities. Arabian J. Chem 2019; 12 (7): 908-931.

50.   Vasconcelos, A, Vega, E, Perez, Y, Gomara, M.J, García, M.L, Haro, I: Conjugation of cell-penetrating peptides with poly (lactic-co-glycolic acid)-polyethylene glycol nanoparticles improves ocular drug delivery. Int. J. Nanomed 2015; 10:609–613.

51.   Bu HZ, Gukasyan HJ, Goulet L, Lou XJ, Xiang C, Koudriakova T: Ocular disposition, pharmacokinetics, efficacy and safety of nanoparticle-formulated ophthalmic drugs. Curr Drug Metab 2007; 8:91–107.

52.   Zhang L, Li Y, Zhang C, Wang Y, Song C: Pharmacokinetics and tolerance study of intravitreal injection of dexamethasone-loaded nanoparticles in rabbits. Int J Nanomedicine 2009; 4:175–183.

53.   Musumeci, T, Bucolo, C, Carbone, C, Pignatello, R, Drago, F, Puglisi, G: Polymeric nanoparticles augment the ocular hypotensive effect of melatonin in rabbits. Int. J. Pharm 2013; 440:135–140.

54.   Suganya V, Anuradha V: Microencapsulation and nanoencapsulation: a review. IJPCR 2017; 9:233–239.

55.   Kaur IP, Garg A, Singla AK, Aggarwal D: Vesicular systems in ocular drug delivery: an overview. Int J Pharm 2004; 269:1–14.

56.   Allison SD: Liposomal drug delivery. Journal of infusion nursing: the official publication of the Infusion Nurses Society 2007; 30(2):89-95

57.   Natarajan JV, Ang M, Darwitan A, Chattopadhyay S, Wong TT, Venkatraman SS: Nanomedicine for glaucoma: liposomes provide sustained release of latanoprost in the eye. Int J of nanomedicine 2012; 7:123-31.

58.   F.A. de Sa, S.F. Taveira, G.M. Gelfuso, E.M. Lima, T. Gratieri, Liposomal voriconazole (VOR) formulation for improved ocular delivery, Colloids Surf. B: Biointerfaces 2015; 133:331–338.

59.   Natarajan, J.V, Ang, M, Darwitan, A, Chattopadhyay, S, Wong, T.T, Venkatraman, S.S: Nanomedicine for glaucoma: Liposomes provide sustained release of latanoprost in the eye. Int. J. Nanomed 2012; 7:123–131.

60.   Taha, E.I, El-Anazi, M.H, El-Bagory, I.M, Bayomi, M.A: Design of liposomal colloidal systems for ocular delivery of ciprofloxacin. Saudi Pharm. J 2014; 22: 231–239.

61.   Villasmil-Sánchez, S. Drhimeur, W, Ospino, S.C.S, Rabasco Alvarez, A.M, González-Rodríguez, M.L: Positively and negatively charged liposomes as carriers for transdermal delivery of sumatriptan: In vitro characterization. Drug Dev. Ind. Pharm 2010; 36:666–675.

62.   Law SL, Huang KJ, Chiang CH: Acyclovir-containing liposomes for potential ocular delivery. Corneal penetration and absorption. J Control Release 2000; 63:135–140.

63.   Nicolosi D, Cupri S, Genovese C, et al: Nanotechnology approaches for antibacterial drug delivery: preparation and microbiological evaluation of fusogenic liposomes carrying fusidic acid. Antimicrob Agents 2015; 45:622–6.

64.   Kambhampati SP, Kannan R: Dendrimer nanoparticles for ocular drug delivery. J Ocul Pharmacol Ther 2013; 29:151–65.

65.   Desai PN, Yang: Synthesis and characterization of photocurable polyionic hydrogels. Mater Res Soc Symp Proc 2008; 1095:1095.

66.   O. Milhem, C. Myles, N. McKeown, D. Attwood, A. D'Emanuele: Polyamidoamine starburst dendrimers as solubility enhancers, Int. J. Pharm 2000: 239–241.

67.   Michael G. Lancina, III1 and Hu Yang: Dendrimers for Ocular Drug Delivery Can J Chem 2017; 95(9): 897–902.

68.   Vandamme TF, Brobeck L: Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release 2005; 102:23–38.

69.   Kandekar Y, Chaudhari PD, Tambe VS, et al: Dendrimers: Novel Drug Nanocarriers. International Journal of Pharmaceutical Sciences and Research (IJPSR) 2011; 2:1086–98.

70.   Rajoria G, Gupta A: In-Situ Gelling System: A Novel Approach for Ocular Drug Delivery. AJPTR 2012; 2:24–53.

71.   Bonacucina G, Cespi M, Mencarelli G, Giorgioni G, Palmieri GF: Thermosensitive Self Assembling Block Copolymers as Drug Delivery Systems. Polymers 2011; 3:779–811

72.   Gratieri T, Gelfuso GM, Rocha EM, Sarmento VH: A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery. Eur J Pharm Biopharm 2010; 75(2):186-93.

73.   Al-Khateb K, Ozhmukhametova EK, Mussin MN, Seilkhanov SK, Rakhypbekov TK, Lau WM, et al: In situ gelling systems based on Pluronic F127/Pluronic F68 formulations for ocular drug delivery. Int J Pharm 2016; 502 (1-2):70-91

74.   Cholkar, K, Patel, S.P, Vadlapudi, A.D, Mitra, A.K: Novel Strategies for Anterior Segment Ocular Drug Delivery. J. Ocul. Pharmacol. Ther 2013; 29:106–123.

75.   Sanchez-Lopez, E, Espina, M, Doktorovova, S, Souto, E.B, Garcia, M.L: Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye—Part II—Ocular drug-loaded lipid nanoparticles. Eur. J. Pharm. Biopharm 2017; 110:58–69.

76.   Osswald CR, Guthrie MJ, Avila A, Valio JJ, Mieler WF, Kang-Mieler JJ: In vivo efficacy of an injectable microsphere-hydrogel ocular drug delivery system. Curr Eye Res 2017; 42(9):1293–301.

77.   Aranguez Ana Guzman, Colligris Basilio, and Pintor Jesu´ s: Contact Lenses: Promising devices for ocular drug delivery j. Ocul. Pharmacol. Ther 2013; 29(2).

78.   Ashaben Patel, Kishore Cholkar, Vibhuti Agrahari and Ashim K Mitra: Ocular drug delivery systems: An overview. World J Pharmacol 2013; 2(2): 47–64.

79.   Kim J, Chauhan A: Dexamethasone transport and ocular delivery from poly (hydroxyethyl methacrylate) gels. Int J Pharm 2008; 353:205–222.

Recomonded Articles:

Author(s): Saudagar R. B., Sarika V. Khandbahale

DOI: 10.5958/2231-5659.2017.00005.4         Access: Open Access Read More

Author(s): Muhammed Jameel VP, Ravikumar, Narayanaswamy VB

DOI: 10.5958/2231-5659.2016.00017.5         Access: Open Access Read More

Author(s): K.Vijaya Sri, Guda Santhoshini, D. Ravi Sankar, K.Niharika

DOI: 10.5958/2231-5659.2018.00005.X         Access: Open Access Read More

Author(s): Girishchandra R. Mandake, Indrajit S. Patil, Omkar A Patil, Manoj M. Nitalikar, Shriniwas K Mohite

DOI: 10.5958/2231-5659.2018.00012.7         Access: Open Access Read More

Author(s): Sana Banu, Syeda Ayesha Farheen

DOI: 10.5958/2231-5659.2019.00015.8         Access: Open Access Read More

Author(s): Deepak Prashar, Dharmesh Sharma

DOI:         Access: Open Access Read More

Author(s): Shubham Jaiswal, Sarin A. Chavhan, Sushilkumar A. Shinde, N.K. Wawge

DOI: 10.5958/2231-5659.2018.00029.2         Access: Open Access Read More

Author(s): D.M. Shinkar, Aarif S. Khatik, R.B. Saudagar

DOI: 10.5958/2231-5659.2016.00022.9         Access: Open Access Read More

Author(s): Surekha Baghel, Bina Gidwani, Chanchal Deep Kaur

DOI: 10.5958/2231-5659.2017.00009.1         Access: Open Access Read More

Author(s): Smita S. Aher, Vaishali D. Sangale, Ravindra B. Saudagar

DOI: 10.5958/2231-5659.2016.00020.5         Access: Open Access Read More

Author(s): Saurabh Tiwari, Shweta Singh, Pushpendra Kumar Tripathi, Chetan Kumar Dubey

DOI: 10.5958/2231-5659.2015.00037.5         Access: Open Access Read More

Author(s): Smita Kolhe, Praveen Chaudhari, Dhananjay More

DOI:         Access: Open Access Read More

Author(s): Sudhir Sawant, Ramesh Yamgar

DOI:         Access: Open Access Read More

Author(s): Aashwini A. Gholkar, Yogesh P. Nikam, Krushna K. Zambare, Kavya V. Reddy, Akash D. Ghorpade

DOI: 10.5958/2231-5659.2020.00010.7         Access: Open Access Read More

Author(s): Divya B., Sabitha P., Ravindra Reddy, M. Kranthi Kumar Reddy , B.Narasimha Rao

DOI:         Access: Open Access Read More

Author(s): Swapnil R. Lahamage, Avinash B. Darekar, Ravindra B. Saudagar

DOI: 10.5958/2231-5659.2016.00008.4         Access: Open Access Read More

Asian Journal of Research in Pharmaceutical Sciences (AJPSci) is an international, peer-reviewed journal, devoted to pharmaceutical sciences....... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2231-5659 


Recent Articles




Tags