Author(s): A.S. Kadbhane, S.B. Dahikar, S.A. Bhutada

Email(s): ashwinikadbhane8888@gmail.com

DOI: 10.52711/2231-5659.2025.00023   

Address: A.S. Kadbhane1,2*, S.B. Dahikar1, S.A. Bhutada1
1Department of Microbiology, S.V.K.T College Deolali Camp, Nashik, India.
2Department of Microbiology, Sanjivani Arts, Science and Commerce College, Kopargaon, India.
*Corresponding Author

Published In:   Volume - 15,      Issue - 2,     Year - 2025


ABSTRACT:
Skin is the first line of the defense mechanism of the immune system which resists many outer invasions. Antimicrobial photodynamic treatment (APDT) is a challenging approach to dealing with infectious skin diseases and other pathogenic organisms. APDT uses photodynamic therapy (PDT) to treat different skin diseases including cancerous and noncancerous cells. APDT shows activity against various infectious diseases caused by broad spectra of microorganisms like bacteria, fungi, and algae. APDT is a successive method to treat multi- drug resistant antibiotics against different bacteria like Staphylococcus aureus, Enterococcus spp., Klebsiella pneumoniae, etc. Decades ago, applications of PDT were initiated by the use of sun rays as a Photosensitizing agent. APDT works combined with photosensitizers (PS), light, and oxygen to inhibit or kill the growth of pathogens or target cells. Different Natural and chemical PS is used to treat cancer cells, noncancerous cells, skin diseases, and acne vulgaris. PDT kills cells by showing the different mechanisms in host tissues directing the inflammatory response. In contrast to traditional therapeutic medications, APDT confers maximum clearness against infectious cells since PS is used directly to invade codocytes. The article presents a brief review of the mechanism of APDT, APDT uses for skin infections along with PS and different natural and synthetic PS.


Cite this article:
A.S. Kadbhane, S.B. Dahikar, S.A. Bhutada. Antimicrobial Photodynamic Therapy – A Promising Approach to Control Pathogens and Infectious Skin Diseases. Asian Journal of Research in Pharmaceutical Sciences. 2025; 15(2):147-4. doi: 10.52711/2231-5659.2025.00023

Cite(Electronic):
A.S. Kadbhane, S.B. Dahikar, S.A. Bhutada. Antimicrobial Photodynamic Therapy – A Promising Approach to Control Pathogens and Infectious Skin Diseases. Asian Journal of Research in Pharmaceutical Sciences. 2025; 15(2):147-4. doi: 10.52711/2231-5659.2025.00023   Available on: https://ajpsonline.com/AbstractView.aspx?PID=2025-15-2-8


REFERENCES:
1.    Luby, B. M., Walsh, C. D., and Zheng, G. Advanced photosensitizer activation strategies for smarter photodynamic therapy beacons. Angewandte Chemie International Edition. 2019; 58(9): 2558-2569.
2.    Berlanda, J., Kiesslich, T., Engelhardt, V., Krammer, B., and Plaetzer, K. Comparative in vitro study on the characteristics of different photosensitizers employed in PDT. Journal of Photochemistry and Photobiology B: Biology. 2010; 100(3): 173-180.
3.    Castano, A. P., Demidova, T. N., and Hamblin, M. R. Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry, and cellular localization. Photodiagnosis and Photodynamic Therapy. 2004; 1(4): 279-293.
4.    Sadanala, K. C., Chaturvedi, P. K., Seo, Y. M., Kim, J. M., Jo, Y. S., Lee, Y. K., and Ahn, W.S. Sono-photodynamic combination therapy: a review on sensitizers. Anticancer Research. 2014; 34(9): 4657-4664.
5.    Heinemann, F., Karges, J., and Gasser, G. A critical overview of the use of Ru (II) polypyridyl complexes as photosensitizers in one-photon and two-photon photodynamic therapy. Accounts of Chemical Research, 2017; 50(11): 2727-2736.
6.    O’Connor, A. E., Gallagher, W. M., and Byrne, A. T. Porphyrin and non porphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochemistry and Photobiology. 2009; 85(5): 1053-1074.
7.    Bonnett, R. Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chemical Society Reviews. 1995; 24(1): 19-33.
8.    Maisch, T. Resistance in antimicrobial photodynamic inactivation of bacteria. Photochemical and Photobiological Sciences. 2015; 14: 1518-1526.
9.    Alexiades-Armenakas, M. Long-pulsed dye laser-mediated photodynamic therapy combined with topical therapy for mild to severe comedonal, inflammatory, or cystic acne. Journal of Drugs in Dermatology: JDD. 2006; 5(1): 45-55.
10.    Jerjes, W., Hamdoon, Z., and Hopper, C. Photodynamic therapy in the management of potentially malignant and malignant oral disorders. Head and Neck Oncology. 2012; 4: 1-7.
11.    Xiao, F., Cao, B., Wang, C., Guo, X., Li, M., Xing, D., and Hu, X. Pathogen-specific polymeric antimicrobials with significant membrane disruption and enhanced photodynamic damage to inhibit highly opportunistic bacteria. ACS Nano. 2019; 13(2): 1511-1525.
12.    Wang, Y., Xu, Y., Guo, X., Wang, L., Zeng, J., Qiu, H. and Gu, Y.  Enhanced antimicrobial activity through the combination of antimicrobial photodynamic therapy and low-frequency ultrasonic irradiation. Advanced Drug Delivery Reviews. 2022; 114168.
13.    Salmivuori, M., Grönroos, M., Tani, T., Pölönen, I., Räsänen, J., Annala, L.. and Neittaanmäki, N. Hexyl aminolevulinate, 5‐aminolevulinic acid nanoemulsion, and methyl aminolevulinate in photodynamic therapy of non‐aggressive basal cell carcinomas: A non‐sponsored, randomized, prospective and double‐blinded trial. Journal of the European Academy of Dermatology and Venereology. 2020; 34(12): 2781-2788.
14.    Current, W. L., and Garcia, L. S. (1991). Cryptosporidiosis. Clinical microbiology reviews, 4(3), 325-358.
15.    Gusain, Poonam., Paliwal, Rashmi., Joga, Rajappa., Gupta, Nishant, and Singh, V. Ancient light therapies: a boon to medical science. Sci Cult. 2016; 82: 7-8.
16.    Schlutz, F. W. Heliotherapy and actinotherapy about pediatrics. American Journal of Diseases of Children. 1926; 32(6): 900-921.
17.    Salas-García, I., Fanjul-Vélez, F., and Arce-Diego, J. L. Photosensitizer absorption coefficient modeling and necrosis prediction during photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology. 2012; 114: 79-86.
18.    Moreira, L. M., Lyon, J. P., Romani, A. P., Severino, D., Rodrigues, M. R., and de Oliveira, H. P. Phenotiazinium dyes as photosensitizers (PS) in photodynamic therapy (PDT): spectroscopic properties and photochemical mechanisms. Advanced Aspects of Spectroscopy. 2012; 14: 393-422.
19.    Grzybowski, A., Sak, J., and Pawlikowski, J. A brief report on the history of phototherapy. Clinics in Dermatology. 2016; 34(5), 532-537.
20.    Ackroyd, R., Kelty, C., Brown, N., and Reed, M. The history of photodetection and photodynamic therapy. Photochemistry and Photobiology. 2001; 74(5): 656-669.
21.    Karaman, O. Synthesis and in vitro studies of selenophene containing bodily derivatives as mitochondria-targeted photodynamic therapy agents. 2019
22.    Lipson, R. L., and Baldes, E. J. The photodynamic properties of a particular hematoporphyrin derivative. Archives of Dermatology. 1960; 82(4): 508-516.
23.    Ghorbani, J., Rahban, D., Aghamiri, S., Teymouri, A., and Bahador, A. Photosensitizers in antibacterial photodynamic therapy: An overview. Laser therapy. 2018; 27(4): 293-302.
24.    Narband, N. Nanoparticles and photosensitizers; their interactions and antibacterial properties (Doctoral dissertation, UCL (University College London)). 2009
25.    Rizzello, L., and Pompa, P. P. Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chemical Society Reviews. 2014; 43(5): 1501-1518.
26.    Sai, D. L., Lee, J., Nguyen, D. L., and Kim, Y. P. Tailoring photosensitive ROS for advanced photodynamic therapy. Experimental and Molecular Medicine. 2021; 53(4): 495-504.
27.    Kim, M., Jung, H. Y., and Park, H. J. Topical PDT in the treatment of benign skin diseases: principles and new applications. International Journal of Molecular Sciences. 2015; 16(10): 23259-23278.
28.    Qian, P., Evensen, J. F., Rimington, C., and Moan, J. A comparison of different photosensitizing dyes concerning uptake C3H-tumors and tissues of mice. Cancer Letters. 1987; 36(1): 1-10.
29.    Ethirajan, M., Chen, Y., Joshi, P., and Pandey, R. K. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chemical Society Reviews. 2011; 40(1): 340-362.
30.    Gotardo, F., Cocca, L. H., Acunha, T. V., Longoni, A., Toldo, J., Gonçalves, P. F. and De Boni, L. Investigating the intersystem crossing rate and triplet quantum yield of Protoporphyrin IX using pulse train fluorescence technique. Chemical Physics Letters. 2017; 674: 48-57.
31.    Barretta, P., and Mazzone, G. Mechanism of action of an Ir (III) Complex Bearing a Boronic Acid Active as H2O2-Responsive Photosensitizer: ROS Generation and Quinone Release for GSH Scavenging. Inorganic Chemistry Frontiers. 2023
32.    van den Bergh, H. Photodynamic therapy of age-related macular degeneration: History and principles. In Seminars in Ophthalmology. 2001; 16(4): 181- 200.
33.    Nimse, S. B., and Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances. 2015; 5(35): 27986-28006.
34.    Maharjan, P. S., and Bhattarai, H. K. Singlet oxygen, photodynamic therapy, and mechanisms of cancer cell death. Journal of Oncology. 2022.
35.    Hamblin, M. R., and Abrahamse, H. Oxygen-independent antimicrobial photoinactivation: Type III photochemical mechanism? Antibiotics. 2020; 9(2): 53.
36.    Toussaint, M., Pinel, S., Auger, F., Durieux, N., Thomassin, M., Thomas, E., ... and Barberi- Heyob, M. Proton MR spectroscopy and diffusion MR imaging monitoring to predict tumor response to interstitial photodynamic therapy for glioblastoma. Theranostics. 2017; 7(2): 436.
37.    Timon, C. M., Heffernan, E., Kilcullen, S. M., Lee, H., Hopper, L., Quinn, J. and Murphy, C. Development of an Internet of Things technology platform (the NEX system) to support older adults to live independently: protocol for a development and usability study. JMIR Research Protocols. 2022; 11(5): e35277.
38.    Allegra, A., Pioggia, G., Tonacci, A., Musolino, C., and Gangemi, S. Oxidative stress and photodynamic therapy of skin cancers: Mechanisms, challenges, and promising developments. Antioxidants. 2020; 9(5): 448.
39.    Ferguson, S., Galligan, D., and Galligan, T. MitoSensor. (2018
40.    Denis, T. G. S., Aziz, K., Waheed, A. A., Huang, Y. Y., Sharma, S. K., Mroz, P., and Hamblin, M. R. Combination approaches to potentiate immune response after photodynamic therapy for cancer. Photochemical and Photobiological Sciences. 2011; 10: 792-801.
41.    Mroz, P., Yaroslavsky, A., Kharkwal, G. B., and Hamblin, M. R. Cell death pathways in photodynamic therapy of cancer. Cancers. 2011; 3(2): 2516-2539.
42.    Peterson, J. D., and Goldman, M. P. Rejuvenation of the aging chest: a review and our experience. Dermatologic Surgery. 2011; 37(5): 555-571.
43.    Sarcognato, S., de Jong, I. E., Fabris, L., Cadamuro, M., and Guido, M. Necroptosis in cholangiocarcinoma. Cells. 2020; 9(4):  982.
44.    Koçkara, A., and Kayataş, M. Renal cell apoptosis and new treatment options in sepsis-induced acute kidney injury. Renal Failure. 2013; 35(2): 291-294.
45.    Scaravilli, M. Identification of 1p21-22 Amplification in Bladder Cancer and Expression of non-coding RNAs in Prostate Cancer. 2016
46.    Ghorbani, J., Rahban, D., Aghamiri, S., Teymouri, A., and Bahador, A. Photosensitizers in antibacterial photodynamic therapy: An overview. Laser Therapy. 2018; 27(4): 293-302.
47.    Maldonado-Carmona, N., Ouk, T. S., and Leroy-Lhez, S. Latest trends on photodynamic disinfection of Gram-negative bacteria: Photosensitizer’s structure and delivery systems. Photochemical and Photobiological Sciences. 2022: 1-33.
48.    F Sperandio, F., Huang, Y. Y., and R Hamblin, M. Antimicrobial photodynamic therapy to kill Gram-negative bacteria. Recent Patents on Anti-Infective Drug Discovery. 2013; 8(2): 108-120.
49.    Reinke, J. M., and Sorg, H. Wound repair and regeneration. European Surgical Research. 2012; 49(1): 35-43.
50.    Wang, X. L., Wang, H. W., Yuan, K. H., Li, F. L., and Huang, Z. Combination of photodynamic therapy and immunomodulation for skin diseases—update of clinical aspects. Photochemical and Photobiological Sciences. 2011; 10: 704-711.
51.    Wen, X., Li, Y., and Hamblin, M. R. Photodynamic therapy in dermatology beyond non-melanoma cancer: An update. Photodiagnosis and Photodynamic Therapy. 2017; 19: 140-152.
52.    Ning, X., He, G., Zeng, W., and Xia, Y. The photosensitizer-based therapies enhance the repairing of skin wounds. Frontiers in Medicine. 2022; 9.
53.    Mardani, M., and Kamrani, O. Effectiveness of antimicrobial photodynamic therapy with indocyanine green against the standard and fluconazole-resistant Candida albicans. Lasers in Medical Science. 2021; 36(9): 1971-1977.
54.    Quishida, C. C. C., Carmello, J. C., Mima, E. G. D. O., Bagnato, V. S., Machado, A. L., and Pavarina, A. C. Susceptibility of multispecies biofilm to photodynamic therapy using Photodithazine®. Lasers in Medical Science. 2015; 30: 685-694.
55.    Luby, B. M., Walsh, C. D., and Zheng, G. Advanced photosensitizer activation strategies for smarter photodynamic therapy beacons. Angewandte Chemie International Edition. 2019; 58(9): 2558-2569.
56.    Zane, C., De Panfilis, G., and Calzavara-Pinton, P. Photosensitizers—systemic sensitization. In Comprehensive Series in Photosciences.  2001; 2: 101-114.
57.    Chilakamarthi, U., and Giribabu, L. Photodynamic therapy: past, present and future. The Chemical Record. 2017; 17(8): 775-802.
58.    Fritsch, C., Verwohlt, B., Bolsen, K., Ruzicka, T., and Goerz, G. Influence of topical photodynamic therapy with 5-aminolevulinic acid on porphyrin metabolism. Archives of Dermatological Research. 1996; 288: 517-521.
59.    Tarstedt, M., Gillstedt, M., Wennberg Larkö, A. M., and Paoli, J. Aminolevulinic acid and methyl aminolevulinate equally effective in topical photodynamic therapy for non‐ melanoma skin cancers. Journal of the European Academy of Dermatology and Venereology. 2016; 30(3): 420-423.
60.    Wainwright, M., and Giddens, R. M. Phenothiazinium photosensitisers: choices in synthesis and application. Dyes and Pigments. 2003; 57(3): 245-257.
61.    Malatesti, N., Munitic, I., and Jurak, I. Porphyrin-based cationic amphiphilic photosensitisers as potential anticancer, antimicrobial and immunosuppressive agents. Biophysical Reviews. 2017; 9(2): 149-168.
62.    Castano, A. P., Demidova, T. N., and Hamblin, M. R. Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagnosis and Photodynamic Therapy. 2004; 1(4): 279-293.
63.    Sułek, A., Pucelik, B., Kobielusz, M., Barzowska, A., and Dąbrowski, J. M. Photodynamic inactivation of bacteria with porphyrin derivatives: effect of charge, lipophilicity, ROS generation, and cellular uptake on their biological activity in vitro. International Journal of Molecular Sciences. 2020; 21(22): 8716.
64.    Ghorbani, J., Rahban, D., Aghamiri, S., Teymouri, A., and Bahador, A. Photosensitizers in antibacterial photodynamic therapy: An overview. Laser Therapy. 2018; 27(4): 293-302.
65.    Suntar, I., Akkol, E. K., Keleş, H., Oktem, A., Başer, K. H. C., and Yeşilada, E. A novel wound healing ointment: a formulation of Hypericum perforatum oil and sage and oregano essential oils based on traditional Turkish knowledge. Journal of Ethnopharmacology. 2011; 134(1): 89-96.

Recomonded Articles:

Author(s): Mohd. Yaqub Khan, Irfan Aziz, Imtiyaz Ahmad, Bipin Bihari, Hemant Kumar, Manju Panday

DOI:         Access: Open Access Read More

Author(s): Surbhi Choursiya, Pragya Gawande, Anjali Rathore

DOI: 10.5958/2231-5659.2021.00014.X         Access: Open Access Read More

Author(s): Rahamat Unissa, P. Mahesh Kumar, Gella Sunil

DOI: 10.5958/2231-5659.2019.00005.5         Access: Open Access Read More

Author(s): Ismail Hussain, Ravikumar, Narayanaswamy VB, Injamamul Haque, Mohibul Hoque

DOI: 10.5958/2231-5659.2016.00030.8         Access: Open Access Read More

Author(s): Ch. Nagadev, M. Durga Srinivasa Rao, P. Venkatesh, D. Hepcykalarani, R. Prema

DOI: 10.5958/2231-5659.2020.00021.1         Access: Open Access Read More

Author(s): Rahamat Unissa, Bobillapati Jyothirmayi, Amrutha Mounica, Lagadapati Tejaswini, Gurram Asha Latha, Gujjula Nishitha, Chette Swati

DOI: 10.5958/2231-5659.2018.00033.4         Access: Open Access Read More

Author(s): Surekha Baghel, Bina Gidwani, Chanchal Deep Kaur

DOI: 10.5958/2231-5659.2017.00009.1         Access: Open Access Read More

Author(s): Akshay R. Yadav, Shrinivas K. Mohite, Chandrakant S. Magdum

DOI: 10.5958/2231-5659.2020.00028.4         Access: Open Access Read More

Author(s): Swapnali Mohite, Rutuja Shah, Naziya Patel

DOI: 10.5958/2231-5659.2018.00004.8         Access: Open Access Read More

Author(s): Rahul Jodh, Mukund Tawar, Aparna Kachewar, Vishal Mahanur, Yash Sureka, Virendra Atole

DOI: 10.52711/2231-5659.2022.00006         Access: Open Access Read More

Author(s): Ashwini S. Jadhav, Omkar A. Patil, Sampada V. Kadam, Dr. Mangesh A. Bhutkar

DOI: 10.5958/2231-5659.2020.00006.5         Access: Open Access Read More

Author(s): Kirti Kubal, Kunal Dikwalkar, Akshay Rane, Palisha Hodawadekar, Amita Bhalekar, Nikita Dhuri, Shubham Chavan, Rohan Barse, Vijay Jagtap

DOI: 10.52711/2231-5659.2023.00040         Access: Open Access Read More

Author(s): Smita Kolhe, Praveen Chaudhari, Dhananjay More

DOI:         Access: Open Access Read More

Author(s): Goli.Venkateshwarlu, Ragya Eslavath, Santhosh. Anasuri, Gutha.Suma, Kasireddy.Swapna, E.Rajeshwari

DOI:         Access: Open Access Read More

Author(s): Sarika S. Lokhande

DOI: 10.5958/2231-5659.2019.00032.8         Access: Open Access Read More

Author(s): Jain Honey, Batra Neha, Bairwa Ranjan, Srivastava Birendra, Anurag Thakur

DOI:         Access: Open Access Read More

Author(s): S. More, T. Ghadge, S. Dhole

DOI:         Access: Open Access Read More

Author(s): Swati Rawat, Akhilesh Gupta

DOI:         Access: Open Access Read More

Author(s): Shivani Sharma, Hitesh K. Dhamija, Bharat Parashar

DOI:         Access: Open Access Read More

Asian Journal of Research in Pharmaceutical Sciences (AJPSci) is an international, peer-reviewed journal, devoted to pharmaceutical sciences....... Read more >>>

RNI: Not Available                     
DOI: 10.52711/2231-5659 


Recent Articles




Tags