Author(s):
Rupali J. Ghule, Priyal N. Jadhav, Yogeshwari N. Sanap, Mukund M. Pache, Avinash B. Darekar
Email(s):
rupalijghule@gmail.com , priyaljadhav2412@gmail.com , yogeshwarisanap2005@gmail.com , mukundpache918@gmail.com , nipernashik.kvn@gmail.com
DOI:
10.52711/2231-5659.2025.00055
Address:
Rupali J. Ghule, Priyal N. Jadhav, Yogeshwari N. Sanap, Mukund M. Pache, Avinash B. Darekar
K.V.N. Naik S. P. Sanstha’s, Institute of Pharmaceutical Education and Research, Nashik, 422002, Maharashtra, India.
*Corresponding Author
Published In:
Volume - 15,
Issue - 4,
Year - 2025
ABSTRACT:
Background: Chemotherapy remains a central strategy in cancer treatment; however, its effectiveness is often diminished by the emergence of drug resistance, which contributes to over 90% of cancer-related deaths. Traditionally, resistance has been linked to genetic mutations and altered drug metabolism. Recent findings, however, highlight the critical role of extracellular vesicles (EVs) in mediating intercellular communication and facilitating adaptive resistance. Objective: This review examines the involvement of tumour-derived EVs in chemotherapy resistance, focusing on their cargo microRNAs (miRNAs), proteins, and lipids and their impact on drug efflux, apoptosis evasion, and immune suppression. Key Findings: EVs facilitate resistance through various mechanisms. For instance, EVs transfer ATP-binding cassette (ABC) transporters such as P-glycoprotein, enhancing drug efflux and promoting multidrug resistance. Oncogenic miRNAs (e.g., miR-21, miR-155) within EVs suppress pro-apoptotic genes (PTEN, CASP3), impeding cell death. Moreover, EVs contribute to tumour microenvironment remodelling by activating cancer-associated fibroblasts and carrying PD-L1 to suppress T-cell responses. Clinical Relevance: EV-derived biomarkers including circulating miRNAs (miR-192, miR-484, miR-205) and DNA mutations (KRAS, TP53, EGFR) offer potential for non-invasive monitoring. Therapeutic strategies such as EV inhibition (e.g., GW4869, Rab27a inhibitors) and engineered EVs for targeted delivery are promising. Conclusion: EV-targeted approaches may transform personalised cancer therapy. Nonetheless, overcoming challenges related to EV heterogeneity, standardisation, and specificity is essential for clinical translation. Future work should prioritise tumour-selective EV inhibition and AI-based biomarker discovery.
Cite this article:
Rupali J. Ghule, Priyal N. Jadhav, Yogeshwari N. Sanap, Mukund M. Pache, Avinash B. Darekar. Tumour-Derived Extracellular Vesicles in Chemotherapy Resistance: Molecular Pathways, Clinical Implications and Therapeutic Opportunities. Asian Journal of Research in Pharmaceutical Sciences. 2025; 15(4):371-0. doi: 10.52711/2231-5659.2025.00055
Cite(Electronic):
Rupali J. Ghule, Priyal N. Jadhav, Yogeshwari N. Sanap, Mukund M. Pache, Avinash B. Darekar. Tumour-Derived Extracellular Vesicles in Chemotherapy Resistance: Molecular Pathways, Clinical Implications and Therapeutic Opportunities. Asian Journal of Research in Pharmaceutical Sciences. 2025; 15(4):371-0. doi: 10.52711/2231-5659.2025.00055 Available on: https://ajpsonline.com/AbstractView.aspx?PID=2025-15-4-5
8. REFERENCES:
1. Wang Y, Wu X, Ren Z, et al. Overcoming cancer chemotherapy resistance by the induction of ferroptosis. Drug Resistance Updates. 2023;66:100916; doi: 10.1016/j.drup.2022.100916.
2. Wang Q, Shen X, Chen G, et al. Drug Resistance in Colorectal Cancer: From Mechanism to Clinic. Cancers. 2022;14(12): 2928; doi: 10.3390/cancers14122928.
3. Bukowski K, Kciuk M, Kontek R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. IJMS 2020;21(9):3233; doi: 10.3390/ijms21093233.
4. Xavier CPR, Belisario DC, Rebelo R, et al. The role of extracellular vesicles in the transfer of drug resistance competences to cancer cells. Drug Resistance Updates. 2022; 62: 100833; doi: 10.1016/j.drup.2022.100833.
5. Sen A, Kumar K, Khan S, et al. Current Therapy in Cancer: Advances, Challenges, and Future Directions. AJNER. 2024; 77–84; doi: 10.52711/2349-2996.2024.00016.
6. Khatri M, Dhar S, Ven P, et al. Understanding the Pharmacological Mechanisms of Anticancer Resistance: A Multifaceted Challenge in Cancer Treatment. AJPR. 2024; 183–187; doi: 10.52711/2231-5691.2024.00030.
7. Lee Y, Kim J-H. The emerging roles of extracellular vesicles as intercellular messengers in liver physiology and pathology. Clin Mol Hepatol. 2022; 28(4): 706–724; doi: 10.3350/cmh.2021.0390.
8. Smolarz M, Widlak P. Serum Exosomes and Their miRNA Load—A Potential Biomarker of Lung Cancer. Cancers. 2021; 13(6): 1373; doi: 10.3390/cancers13061373.
9. He C, Ali DJ, Sun B, et al. Microvesicles: the functional mediators in sorafenib resistance. Cancer Drug Resist. 2022; 5(3): 749–61; doi: 10.20517/cdr.2021.137.
10. Alrubaye YSJ, Mohammed MB, Abdulamir HA. Exosome and Breast Cancer. RJPT. 2022;1393–1397; doi: 10.52711/0974-360X.2022.00232.
11. Han M, Ryu G, Shin S-A, et al. Physiological Roles of Apoptotic Cell Clearance: Beyond Immune Functions. Life. 2021; 11(11): 1141; doi: 10.3390/life11111141.
12. Auger C, Brunel A, Darbas T, et al. Extracellular Vesicle Measurements with Nanoparticle Tracking Analysis: A Different Appreciation of Up and Down Secretion. IJMS. 2022; 23(4): 2310; doi: 10.3390/ijms23042310.
13. Schneider DJ, Speth JM, Peters-Golden M. Signed, Sealed, Delivered: Microenvironmental Modulation of Extracellular Vesicle-Dependent Immunoregulation in the Lung. Front Cell Dev Biol. 2016; 4; doi: 10.3389/fcell.2016.00094.
14. Xavier CPR, Caires HR, Barbosa MAG, et al. The Role of Extracellular Vesicles in the Hallmarks of Cancer and Drug Resistance. Cells. 2020; 9(5): 1141; doi: 10.3390/cells9051141.
15. Da Fonseca Alves R, Pallarès-Rusiñol A, Rossi R, et al. Peptide-based biosensing approaches for targeting breast cancer-derived exosomes. Biosensors and Bioelectronics. 2024; 255: 116211; doi: 10.1016/j.bios.2024.116211.
16. Santos P, Rezende CP, Piraine R, et al. Extracellular vesicles from human breast cancer-resistant cells promote acquired drug resistance and pro-inflammatory macrophage response. Front Immunol 2024;15:1468229; doi: 10.3389/fimmu.2024.1468229.
17. Pache M, Nikam S. Antibiotic Resistance: Current Challenges and Future Directions. Int J of Pharm Sci. 2025; 3(1): 1600–1622; doi: 10.5281/ZENODO.14690670.
18. Pache MM, Pangavhane RR. Immunotherapy in Autoimmune Diseases: Current Advances and Future Directions. Asian Journal of Pharmaceutical Research. 2025.
19. Naghibi AF, Daneshdoust D, Taha SR, et al. Role of cancer stem cell-derived extracellular vesicles in cancer progression and metastasis. Pathology - Research and Practice. 2023; 247: 154558; doi: 10.1016/j.prp.2023.154558.
20. Hinzman CP, Singh B, Bansal S, et al. A multi‐omics approach identifies pancreatic cancer cell extracellular vesicles as mediators of the unfolded protein response in normal pancreatic epithelial cells. J of Extracellular Vesicle. 2022; 11(6): e12232; doi: 10.1002/jev2.12232.
21. Sousa D, Lima RT, Vasconcelos MH. Intercellular Transfer of Cancer Drug Resistance Traits by Extracellular Vesicles. Trends in Molecular Medicine. 2015; 21(10): 595–608; doi: 10.1016/j.molmed.2015.08.002.
22. Słomka A, Kornek M, Cho WC. Small Extracellular Vesicles and Their Involvement in Cancer Resistance: An Up-to-Date Review. Cells. 2022; 11(18): 2913; doi: 10.3390/cells11182913.
23. Cheng H-Y, Su G-L, Wu Y-X, et al. Extracellular vesicles in anti-tumor drug resistance: Mechanisms and therapeutic prospects. Journal of Pharmaceutical Analysis. 2024; 14(7): 100920; doi: 10.1016/j.jpha.2023.12.010.
24. Chiangjong W, Chutipongtanate S. EV-out or EV-in: Tackling cell-to-cell communication within the tumor microenvironment to enhance anti-tumor efficacy using extracellular vesicle-based therapeutic strategies. OpenNano. 2022; 8: 100085; doi: 10.1016/j.onano.2022.100085.
25. Yang A, Sun H, Wang X. Intercellular transfer of multidrug resistance mediated by extracellular vesicles. Cancer Drug Resist. 2024; doi: 10.20517/cdr.2024.84.
26. Cao F, Li Y, Ma F, et al. Synthesis and evaluation of WK-X-34 derivatives as P-glycoprotein (P-gp/ABCB1) inhibitors for reversing multidrug resistance. RSC Med Chem. 2024; 15(2): 506–518; doi: 10.1039/D3MD00612C.
27. Cole SPC. Targeting Multidrug Resistance Protein 1 (MRP1, ABCC1 ): Past, Present, and Future. Annu Rev Pharmacol Toxicol. 2014; 54(1): 95–117; doi: 10.1146/annurev-pharmtox-011613-135959.
28. Chen R, Yu Y, Liu R, et al. Targeting breast cancer resistance protein (BCRP/ABCG2) in cancer. Transl Cancer Res. 2024; 13(11): 6550–6564; doi: 10.21037/tcr-24-1129.
29. Pache MM, Thorat AS, Mule RR, et al. Recent advances in the use of alkaloids as therapeutic agents: a pharmacognostic perspective. World Journal of Pharmaceutical Research. 2025; 14(2): 538–552.
30. Maleki S, Jabalee J, Garnis C. The Role of Extracellular Vesicles in Mediating Resistance to Anticancer Therapies. IJMS. 2021; 22(8): 4166; doi: 10.3390/ijms22084166.
31. Liu Y, Liu F, Zeng Y, et al. Hydrogel systems for spatiotemporal controlled delivery of immunomodulators: engineering the tumor immune microenvironment for enhanced cancer immunotherapy. Front Cell Dev Biol. 2024; 12: 1514595; doi: 10.3389/fcell.2024.1514595.
32. Guo Z, Zhang Y, Gong Y, et al. Antibody functionalized curcuma-derived extracellular vesicles loaded with doxorubicin overcome therapy-induced senescence and enhance chemotherapy. Journal of Controlled Release. 2025; 379: 377–389; doi: 10.1016/j.jconrel.2025.01.029.
33. Xue X, Liu Y, Wang Y, et al. MiR-21 and MiR-155 promote non-small cell lung cancer progression by downregulating SOCS1 , SOCS6 , and PTEN. Oncotarget. 2016; 7(51): 84508–84519; doi: 10.18632/oncotarget.13022.
34. Kariya Y, Gu J, Kariya Y. Integrin α6β4 Confers Doxorubicin Resistance in Cancer Cells by Suppressing Caspase-3–Mediated Apoptosis: Involvement of N-Glycans on β4 Integrin Subunit. Biomolecules. 2023; 13(12): 1752; doi: 10.3390/biom13121752.
35. Xiao W, Pahlavanneshan M, Eun C-Y, et al. Matrix stiffness mediates pancreatic cancer chemoresistance through induction of exosome hypersecretion in a cancer associated fibroblasts-tumor organoid biomimetic model. Matrix Biology Plus. 2022; 14: 100111; doi: 10.1016/j.mbplus.2022.100111.
36. Chandra Jena B, Sarkar S, Rout L, et al. The transformation of cancer-associated fibroblasts: Current perspectives on the role of TGF-β in CAF mediated tumor progression and therapeutic resistance. Cancer Letters. 2021; 520:.222–232; doi: 10.1016/j.canlet.2021.08.002.
37. Shi X, Young CD, Zhou H, et al. Transforming Growth Factor-β Signaling in Fibrotic Diseases and Cancer-Associated Fibroblasts. Biomolecules. 2020; 10(12): 1666; doi: 10.3390/biom10121666.
38. Shan G, Gu J, Zhou D, et al. Cancer-associated fibroblast-secreted exosomal miR-423-5p promotes chemotherapy resistance in prostate cancer by targeting GREM2 through the TGF-β signaling pathway. Exp Mol Med. 2020; 52(11): 1809–1822; doi: 10.1038/s12276-020-0431-z.
39. Li C, Qiu S, Jin K, et al. Tumor-derived microparticles promote the progression of triple-negative breast cancer via PD-L1-associated immune suppression. Cancer Letters. 2021; 523: 43–56; doi: 10.1016/j.canlet.2021.09.039.
40. Gurung S, Khan F, Gunassekaran GR, et al. Phage display-identified PD-L1-binding peptides reinvigorate T-cell activity and inhibit tumor progression. Biomaterials. 2020; 247: 119984; doi: 10.1016/j.biomaterials.2020.119984.
41. Dou X, Hua Y, Chen Z, et al. Extracellular vesicles containing PD-L1 contribute to CD8+ T-cell immune suppression and predict poor outcomes in small cell lung cancer. Clinical and Experimental Immunology. 2022; 207(3): 307–317; doi: 10.1093/cei/uxac006.
42. Xu H, Tan C, Li C, et al. ESBL-Escherichia coli extracellular vesicles mediate bacterial resistance to β-lactam and mediate horizontal transfer of blaCTX-M-55. International Journal of Antimicrobial Agents. 2024; 63(5): 107145; doi: 10.1016/j.ijantimicag.2024.107145.
43. Li W, Zhang G. Detection and various environmental factors of antibiotic resistance gene horizontal transfer. Environmental Research 2022;212:113267; doi: 10.1016/j.envres.2022.113267.
44. Jiang W, Xia J, Xie S, et al. Long non-coding RNAs as a determinant of cancer drug resistance: Towards the overcoming of chemoresistance via modulation of lncRNAs. Drug Resistance Updates. 2020; 50: 100683; doi: 10.1016/j.drup.2020.100683.
45. Eptaminitaki GC, Stellas D, Bonavida B, et al. Long non-coding RNAs (lncRNAs) signaling in cancer chemoresistance: From prediction to druggability. Drug Resistance Updates. 2022; 65: 100866; doi: 10.1016/j.drup.2022.100866.
46. Yang Q, Xu J, Gu J, et al. Extracellular Vesicles in Cancer Drug Resistance: Roles, Mechanisms, and Implications. Advanced Science 2022;9(34):2201609; doi: 10.1002/advs.202201609.
47. Pache M, Kedar H, Kond S, et al. Pharmacological Management of Neurodegenerative Disorders: Current and Future Approaches. Int J Sci R Tech. 2025; 2(3): 405–520; doi: 10.5281/ZENODO.15074000.
48. Fontana F, Carollo E, Melling GE, et al. Extracellular Vesicles: Emerging Modulators of Cancer Drug Resistance. Cancers. 2021; 13(4):749; doi: 10.3390/cancers13040749.
49. Thakur A. Peptide Based Engineering of Extracellular Vesicles for Cancer Theranostics and Vaccine. Int J Pept Res Ther. 2024; 31(1): 13; doi: 10.1007/s10989-024-10673-z.
50. Singhto N, Pongphitcha P, Jinawath N, et al. Extracellular Vesicles for Childhood Cancer Liquid Biopsy. Cancers. 2024; 16(9): 1681; doi: 10.3390/cancers16091681.
51. Xiong Y, Chen X, Yang X, et al. miRNA transcriptomics analysis shows miR-483-5p and miR-503-5p targeted miRNA in extracellular vesicles from severe acute pancreatitis-associated lung injury patients. International Immunopharmacology. 2023; 125: 111075; doi: 10.1016/j.intimp.2023.111075.
52. Skoulidis F, Byers LA, Diao L, et al. Co-occurring Genomic Alterations Define Major Subsets of KRAS -Mutant Lung Adenocarcinoma with Distinct Biology, Immune Profiles, and Therapeutic Vulnerabilities. Cancer Discovery. 2015; 5(8): 860–877; doi: 10.1158/2159-8290.CD-14-1236.
53. Patel B, Gaikwad S, Prasad S. Exploring the significance of extracellular vesicles: Key players in advancing cancer and possible theranostic tools. Cancer Pathogenesis and Therapy. 2025; 3(2): 109–119; doi: 10.1016/j.cpt.2024.04.005.
54. Seliger B. Basis of PD1/PD-L1 Therapies. JCM. 2019; 8(12): 2168; doi: 10.3390/jcm8122168.
55. To KK. MicroRNA: a prognostic biomarker and a possible druggable target for circumventing multidrug resistance in cancer chemotherapy. J Biomed Sci. 2013; 20(1): 99; doi: 10.1186/1423-0127-20-99.
56. Nagampalli RSK, Vadla GP, Nadendla EK. Emerging Strategies to Overcome Chemoresistance: Structural Insights and Therapeutic Targeting of Multidrug Resistance-Linked ATP-Binding Cassette Transporters. IJTM. 2025; 5(1): 6; doi: 10.3390/ijtm5010006.
57. Santos MF, Rappa G, Fontana S, et al. Anti-Human CD9 Fab Fragment Antibody Blocks the Extracellular Vesicle-Mediated Increase in Malignancy of Colon Cancer Cells. Cells. 2022; 11(16): 2474; doi: 10.3390/cells11162474.
58. Kumar A, Kumar P, Sharma M, et al. Role of extracellular vesicles secretion in paclitaxel resistance of prostate cancer cells. Cancer Drug Resist. 2022; 5(3): 612–24; doi: 10.20517/cdr.2022.26.
59. Catalano M, O’Driscoll L. Inhibiting extracellular vesicles formation and release: a review of EV inhibitors. J of Extracellular Vesicle. 2020; 9(1): 1703244; doi: 10.1080/20013078.2019.1703244.
60. Tallon C, Picciolini S, Yoo S, et al. Inhibition of neutral sphingomyelinase 2 reduces extracellular vesicle release from neurons, oligodendrocytes, and activated microglial cells following acute brain injury. Biochemical Pharmacology. 2021; 194: 114796; doi: 10.1016/j.bcp.2021.114796.
61. Rani RU. A study to assess the knowledge regarding the side effects of chemotherapy among cancer patients in selected Hospital, Bangalore. Asian Journal of Nursing Education and Research. 2021; 11(1): 83–85; doi: 10.5958/2349-2996.2021.00021.5.
62. Jaibu AE, Sundaram RS, Krishnaveni. K, et al. Targeted Cancer Therapy: Promises and Reality. Rese Jour of Pharm and Technol. 2018; 11(4): 1407; doi: 10.5958/0974-360X.2018.00263.9.
63. Jayasinghe MK, Pirisinu M, Yang Y, et al. Surface-engineered extracellular vesicles for targeted delivery of therapeutic RNAs and peptides for cancer therapy. Theranostics. 2022; 12(7): 3288–3315; doi: 10.7150/thno.68667.
64. Chan HY, Wang Q, Howie A, et al. Extracellular vesicle biomarkers redefine prostate cancer radiotherapy. Cancer Letters. 2025; 616: 217568; doi: 10.1016/j.canlet.2025.217568.
65. Wang S, Qiao C, Kong X, et al. Adhesion between EVs and tumor cells facilitated EV-encapsulated doxorubicin delivery via ICAM1. Pharmacological Research. 2024; 205: 107244; doi: 10.1016/j.phrs.2024.107244.
66. Cai X, Fan B, Thang SH, et al. Paclitaxel-loaded cubosome lipid nanocarriers stabilised with pH and hydrogen peroxide-responsive steric stabilisers as drug delivery vehicles. J Mater Chem B. 2023; 11(2): 403–414; doi: 10.1039/D2TB01530G.
66. Pache MM, Pangavhane RR, Nikam SV, et al. CRISPR-Cas9 in Pharmaceutical Research: Applications, Challenges, Ethical Considerations and Future Directions. Asian Journal of Pharmacy and Technology. 2025; 15(3).
68. Saldana C, Majidipur A, Beaumont E, et al. Extracellular Vesicles in Advanced Prostate Cancer: Tools to Predict and Thwart Therapeutic Resistance. Cancers. 2021; 13(15): 3791; doi: 10.3390/cancers13153791.
69. Zhang X, Zhang H, Gu J, et al. Engineered Extracellular Vesicles for Cancer Therapy. Advanced Materials. 2021; 33(14): 2005709; doi: 10.1002/adma.202005709.
70. Van De Wakker SI, Meijers FM, Sluijter JPG, et al. Extracellular Vesicle Heterogeneity and Its Impact for Regenerative Medicine Applications. Pharmacological Reviews. 2023; 75(5): 1043–1061; doi: 10.1124/pharmrev.123.000841.
71. Ge K, Ren Y, Hong Z, et al. Microchip Based Isolation and Drug Delivery of Patient‐Derived Extracellular Vesicles Against Their Homologous Tumor. Adv Healthcare Materials. 2024; 13(30): 2401990; doi: 10.1002/adhm.202401990.
72. Yu Z, Liu X, Wu M, et al. Untouched isolation enables targeted functional analysis of tumour‐cell‐derived extracellular vesicles from tumour tissues. J of Extracellular Vesicle. 2022; 11(4): e12214; doi: 10.1002/jev2.12214.
73. González Á, López-Borrego S, Sandúa A, et al. Extracellular vesicles in cancer: challenges and opportunities for clinical laboratories. Critical Reviews in Clinical Laboratory Sciences. 2024; 61(6): 435–457; doi: 10.1080/10408363.2024.2309935.
74. Van Dorpe S, Tummers P, Denys H, et al. Towards the Clinical Implementation of Extracellular Vesicle-Based Biomarker Assays for Cancer. Clinical Chemistry. 2024; 70(1): 165–178; doi: 10.1093/clinchem/hvad189.
75. Hao Y, Song H, Zhou Z, et al. Promotion or inhibition of extracellular vesicle release: Emerging therapeutic opportunities. Journal of Controlled Release. 2021; 340: 136–148; doi: 10.1016/j.jconrel.2021.10.019.
76. Schubert A, Boutros M. Extracellular vesicles and oncogenic signaling. Molecular Oncology. 2021; 15(1): 3–26; doi: 10.1002/1878-0261.12855.
77. Ruivo CF, Bastos N, Adem B, et al. Extracellular Vesicles from Pancreatic Cancer Stem Cells Lead an Intratumor Communication Network (EVNet) to fuel tumour progression. Gut. 2022; 71(10): 2043–2068; doi: 10.1136/gutjnl-2021-324994.
78. Maass KK, Roosen MM, Mueller T, et al. EPEN-28. Oncogenic dependency of pediatric ependymomas on extracellular vesicle pathways. Neuro-Oncology. 2022; 24(Supplement_1): i45–i45; doi: 10.1093/neuonc/noac079.164.
79. Pache MM, Pangavhane RR, Jagtap MN, et al. The AI-Driven Future of Drug Discovery: Innovations, Applications, and Challenges. Asian J Res Pharm Sci. 2025; 15(1):61–67; doi: 10.52711/2231-5659.2025.00009.
80. Min L, Wang B, Bao H, et al. Advanced Nanotechnologies for Extracellular Vesicle‐Based Liquid Biopsy. Advanced Science. 2021; 8(20): 2102789; doi: 10.1002/advs.202102789.
81. Kuzin A, Chernyshev V, Kovalyuk V, et al. Real-time surface functionalization of a nanophotonic sensor for liquid biopsy. Applied Physics Letters. 2023; 123(19): 193702; doi: 10.1063/5.0167631.
82. Taylor C, Patterson KM, Friedman D, et al. Mechanistic Insights into the Successful Development of Combination Therapy of Enfortumab Vedotin and Pembrolizumab for the Treatment of Locally Advanced or Metastatic Urothelial Cancer. Cancers. 2024; 16(17): 3071; doi: 10.3390/cancers16173071.
83. De Rubis G, Bebawy M. Extracellular Vesicles in Chemoresistance. In: New Frontiers: Extracellular Vesicles. (Mathivanan S, Fonseka P, Nedeva C, et al. eds). Subcellular Biochemistry Springer International Publishing: Cham. 2021; pp. 211–245; doi: 10.1007/978-3-030-67171-6_9.
84. Černe K, Kelhar N, Resnik N, et al. Characteristics of Extracellular Vesicles from a High-Grade Serous Ovarian Cancer Cell Line Derived from a Platinum-Resistant Patient as a Potential Tool for Aiding the Prediction of Responses to Chemotherapy. Pharmaceuticals. 2023; 16(6): 907; doi: 10.3390/ph16060907.
85. Zanoni M, Rossi T, Valgiusti M, et al. Abstract 7610: Predictive biomarkers for immuno-chemotherapy response in biliary tract malignancies. Cancer Research 2024;84(6_Supplement):7610–7610; doi: 10.1158/1538-7445.AM2024-7610.
86. Briffault E, Garcia-Garcia P, Martinez-Borrajo R, et al. Harnessing extracellular vesicle membrane for gene therapy: EVs-biomimetic nanoparticles. Colloids and Surfaces B: Biointerfaces. 2024; 239: 113951; doi: 10.1016/j.colsurfb.2024.113951.
87. Xiao Q, Zhao W, Wu C, et al. Lemon‐Derived Extracellular Vesicles Nanodrugs Enable to Efficiently Overcome Cancer Multidrug Resistance by Endocytosis‐Triggered Energy Dissipation and Energy Production Reduction. Advanced Science. 2022; 9(20): 2105274; doi: 10.1002/advs.202105274.
88. Li T, Zhang L, Lu T, et al. Engineered Extracellular Vesicle‐Delivered CRISPR/CasRx as a Novel RNA Editing Tool. Advanced Science. 2023; 10(10): 2206517; doi: 10.1002/advs.202206517.
89. Mun D, Kang J-Y, Kim H, et al. Small extracellular vesicle-mediated CRISPR-Cas9 RNP delivery for cardiac-specific genome editing. Journal of Controlled Release. 2024; 370: 798–810; doi: 10.1016/j.jconrel.2024.05.023.