Author(s):
Khushi Y. Patil, Aakash S. Jain, S. P. Pawar
Email(s):
thekhushipatil@gmail.com
DOI:
10.52711/2231-5659.2025.00059
Address:
Khushi Y. Patil, Aakash S. Jain, S. P. Pawar
Department of Pharmaceutics P.S.G.V.P. Mandal’s College of Pharmacy, Shahada, Dist Nandurbar, Maharashtra, 425409.
*Corresponding Author
Published In:
Volume - 15,
Issue - 4,
Year - 2025
ABSTRACT:
The rapid development of CRISPR/CRISPR-associated enzyme (Cas) technology has enabled truly customised treatment of human genetic disorders, paving the way for recent developments in the field of gene therapy. Because CRISPR/Cas can accurately target and edit individual genes within a genome, it has established itself as a formidable tool for genetic manipulation. Based on this natural process, the CRIPSR technology enables editing of target-specific DNA sequences in any organism's genome with just three molecules: the target DNA; an RNA guide that guides the complex to the target; and a nuclease, specifically caspase 9, which cleaves double-stranded DNA. CRISPR/Cas9 is a simple two-component system for effective targeted gene editing. CRISPR/Cas9 is becoming into a potent tool for high throughput target gene screening in cancer treatment. Genome editing using CRISPR/Cas9 technologies has becoming more and more popular.
Cite this article:
Khushi Y. Patil, Aakash S. Jain, S. P. Pawar. CRISPR Cas 9 Technology: Future of Gene Editing. Asian Journal of Research in Pharmaceutical Sciences. 2025; 15(4):399-4. doi: 10.52711/2231-5659.2025.00059
Cite(Electronic):
Khushi Y. Patil, Aakash S. Jain, S. P. Pawar. CRISPR Cas 9 Technology: Future of Gene Editing. Asian Journal of Research in Pharmaceutical Sciences. 2025; 15(4):399-4. doi: 10.52711/2231-5659.2025.00059 Available on: https://ajpsonline.com/AbstractView.aspx?PID=2025-15-4-9
REFERENCES:
1. Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014; 370(10): 901-10
2. Humbert O, Davis L, Maizels N. Targeted gene therapies: tools, applications, optimization. Crit Rev Biochem Mol Biol. 2012; 47: 264–81. doi: 10.3109/10409238.2012.658112
3. M. Teng, Y. Yao, V. Nair, and J. Luo, “Latest Advances of Virology Research Using Crispr/Cas9-Based Gene-Editing Technology and Its Application to Vaccine Development, Viruses. 2021: 779, https:// doi.org/10.3390/v13050779.
4. Misra S. Human gene therapy: a brief overview of the genetic revolution. J Assoc Physicians India. 2013;61(2):127-33. Review.
5. Marraffini LA, Sontheimer EJ. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet. 2010; 11(3): 181-90. Review
6. Ishino, Y. et al. Nucleotide sequence of the gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169, 5429–5433 (1987).
7. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012; 337(6096): 816-21
8. Gasiunas, G., Barrangou, R., Horvath, P., and Siksnys, V. Cas9‐crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012; 109: E2579–E2586
9. CongL, ZhangF.Genomeengineering using CRISPR-Cas9 system. Methods Mol Biol. 2015: 197–217. doi: 10.1007/978-1-4939-1862-1_10
10. Ceasar SA, Rajan V, Prykhozhij SV, Berman JN, Ignacimuthu S. Insert, remove or replace: a highly advanced genome editing system using CRISPR/Cas9. Biochim Biophys Acta Mol Cell. 2016; 1863(9): 2333–2344. doi: 10.1016/j.bbamcr.2016.06.009
11. R. Kundar and K. Gokarn. CRISPR Cas System: A Tool to Eliminate Drug-Resistant Gram-Negative Bacteria. Pharmaceuticals. 2022; 15(12): 1498,
12. Baylis F, Mcleod M. First-in-human phase 1 CRISPR gene editing cancer trials: are we ready? Curr Gene Ther. 2017; 17: 309–19. doi: 10.2174/1566523217666171121165935
13. Akinsheye I, Alsultan A, Solovieff N, Ngo D, Baldwin CT, Sebastiani P, et al. Fetal hemoglobin in sickle cell anemia. Blood. 2011; 118: 19–27. doi: 10.1182/blood-2011-03- 325258
14. Maeder ML, Stefanidakis M, Wilson CJ, Baral R, Barrera LA, Bounoutas GS, et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med. 2019; 25: 229–33. doi: 10.1038/s41591-018-0327-9
15. Ye L, Wang J, Beyer AI, Teque F, Cradick TJ, Qi Z, et al. Seamless modification of wild- type induced pluripotent stem cells to the natural CCR5Delta32 mutation confers resistance to HIV infection.
16. Zhai P, Ding Y, Wu X, Long J, Zhong Y, Li Y. The epidemiology, diagnosis and treatment of COVID-19. Int J Antimicrobial Agents. 2020; 55: 105955. Doi: 10.1016/j.ijantimicag.2020.105955
17. Kang Y, Chu C, Wang F, Niu Y. CRISPR/Cas9-mediated genome editing in nonhuman primates. Dis Models Mech. 2019; 12(10): dmm 03998
18. Dampier, W., Nonnemacher, M. R., Sullivan, N. T., Jacobson, J. M., and Wigdahl, B. HIV excision utilizing CRISPR/Cas9 technology: Attacking the proviral quasispecies in reservoirs to achieve a cure. 2014
19. Bergeron, N., Phan, B. A. P., Ding, Y., Fong, A., and Krauss, R. M. (2015). Proprotein convertase subtilisin/kexin type 9 inhibition. Circulation, 132, 1648–1666.
20. Daiger, S. P., Bowne, S. J., and Sullivan, L. S. Perspective on genes and mutations causing retinitis pigmentosa. Archives of Ophthalmology (Chicago, Ill.: 1960). 2007; 125: 151–158
21. Kumar P, Malik YS, Ganesh B, Rahangdale S, Saurabh S, Nate san S, Dhama K. CRISPR Cas system: An approach with potentials for COVID-19 diagnosis and therapeutics. Front Cell Infect Microbiol. 2020; 10: 576875
22. Isgrò A., Gaziev J., Sodani P., Lucarelli G. Progress in hematopoietic stem cell transplantation as allogeneic cellular gene therapy in thalassemia. Ann. N. Y. Acad. Sci.
23. Cho S.W., Kim S., Kim Y., Kweon J., Kim H.S., Bae S., Kim J.-S. Analysis of off-target effects of CRISPR/Cas-Derived RNA-guided endonucleases and nickases. Genome Res. 2014; 24: 132–141. doi: 10.1101/gr.162339.113.
24. Caplan A.L., Parent B., Shen M., Plunkett C. No time to waste—the ethical challenges created by CRISPR. EMBO Rep. 201516:1421–1426. doi: 10.15252/embr.201541337.
25. Furtado R.N., Furtado R.N. Gene Editing: The risks and benefits of modifying human DNA. Rev. Bioética. 2019; 27: 223–233. doi: 10.1590/1983-80422019272304.
26. C. Li, E. Brant, H. Budak, et al. CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement J Zhejiang Univ. Sci B. 2021; 22(4): 253-284.
27. Dunbar, C. E. et al. Gene therapy comes of age. Science. 2018; 359. https://doi.org/ 10.1126/science. aan 4672.