Author(s): Vikas D. Nikam, Mitesh P. Sonawane, Kirti S. Pawar, Akash Rathod, Akash Tamboli

Email(s): vikasnikam6616@gmail.com

DOI: 10.52711/2231-5659.2025.00033   

Address: Vikas D. Nikam*, Mitesh P. Sonawane, Kirti S. Pawar, Akash Rathod, Akash Tamboli
Department of Pharmaceutics, Loknete Dr. J. D. Pawar College of Pharmacy, Manur, Kalwan, Maharashtra.
*Corresponding Author

Published In:   Volume - 15,      Issue - 2,     Year - 2025


ABSTRACT:
The prevalence of diabetes mellitus is increasing globally. Individuals suffering from diabetic complications encounter a range of social, mental, and physical challenges. Liposomes have been developed as a nanocarrier to enhance the administration of oral hypoglycaemic medications, surpassing the efficacy of conventional therapy. Liposomes offer significant regulation of raised blood glucose levels, rendering them a highly intriguing and potential therapeutic approach in contemporary research. Liposomes serve as a protective barrier for encapsulated hypoglycaemic medicines, hence optimising the efficacy of prolonged reductions in blood glucose levels. Hence, the objective of enhancing diabetes management while minimising the likelihood of both immediate and long-term complications is facilitated by the utilisation of liposomes filled with hypoglycaemic drugs. This article begins by examining the present condition of diabetes mellitus and the essential components of liposomal medicine delivery systems. We will next go into great detail about the composition, production methods, structure, along with drug incorporation of liposomes. In order to assure the efficiency of liposomes in both in vitro and in vivo settings, it is imperative to thoroughly characterise them prior to their utilisation. Consequently, numerous attributes of liposomes were examined. The primary objective of this review is to examine the limitations and stability of liposomes.


Cite this article:
Vikas D. Nikam, Mitesh P. Sonawane, Kirti S. Pawar, Akash Rathod, Akash Tamboli. An Upgraded Review: Anti-Diabetic Medication administration by Liposomal Formulation. Asian Journal of Research in Pharmaceutical Sciences. 2025; 15(2):215-2. doi: 10.52711/2231-5659.2025.00033

Cite(Electronic):
Vikas D. Nikam, Mitesh P. Sonawane, Kirti S. Pawar, Akash Rathod, Akash Tamboli. An Upgraded Review: Anti-Diabetic Medication administration by Liposomal Formulation. Asian Journal of Research in Pharmaceutical Sciences. 2025; 15(2):215-2. doi: 10.52711/2231-5659.2025.00033   Available on: https://ajpsonline.com/AbstractView.aspx?PID=2025-15-2-18


REFERENCES:
1.    Khan Y, Gupta P, Bihari B, Verma VK. A Review on Diabetes and Its Management. Asian Journal of Pharmaceutical Research. 2013; 3(1):28-33.
2.    Kamtekar S, Keer V. Management of diabetes: a review. Research Journal of Pharmacy and Technology. 2014; 7(9):1065-72.
3.    Singh S, Kushwaha P, Gupta SK. Exploring the potential of traditional herbs in the management of diabetic retinopathy: an overview. Drug Res. 2020; 70(7):298–309. https://doi.org/10.1055/a-1148-3950.
4.    Kumari MS, Babu MK, Sulthana R, Srinivas M, Prasanthi C. Diabetes Mellitus: Present status and Drug therapy Updates. Research Journal of Pharmacy and Technology. 2014; 7(1):84-94.
5.    Panwar R, Raghuwanshi N, Srivastava AK, Sharma AK, Pruthi V. In-vivo sustained release of nanoencapsulated ferulic acid and its impact in induced diabetes. Mater Sci Eng C Mater Biol Appl. 2018; 92:381–392. https://doi.org/10.1016/j.msec.2018.06.055.
6.    Chen X, Ren Y, Feng Y, Xu X, Tan H, Li J. Cp1-11 peptide/insulin complex loaded pH responsive nanoparticles with enhanced oral bioactivity. Int J Pharm. 2019; 562: 23–30. https://doi.org/10.1016/j.ijpharm.2019.03.020.
7.    Gouda W, Hafiz NA, Mageed L, Alazzouni AS, Khalil WKB, Abdelmaksoud MDE. Effects of nano-curcumin on gene expression of insulin and insulin receptor. Bull Natl Res Cent. 2019; 43:128. https://doi.org/10.1186/s42269-019-0164-0.
8.    U. Food, D. Administration, Liposome drug products: chemistry, manufacturing, and controls; human pharmacokinetics and bioavailability; and labeling documentation. Guidance for Industry, CDER, 2018.
9.    Giordani S, Marassi V, Zattoni A, Roda B, Reschiglian P. Liposomes characterization for market approval as pharmaceutical products: analytical methods, guidelines and standardized protocols. Journal of Pharmaceutical and Biomedical Analysis. 2023 Sep 27: 115751. https://doi.org/10.1016/j.jpba.2023.115751.
10.    Matole V, Shegaonkar A, Kumbhar S, Thorat Y, Hosmani A. Need of liposomes as a novel drug delivery system. Research Journal of Pharmaceutical Dosage Forms and Technology. 2020; 12(4):285-94.
11.    G.T. Noble, J.F. Stefanick, J.D. Ashley, T. Kiziltepe, B. Bilgicer, Ligand-targeted liposome design: challenges and fundamental considerations, Trends Biotechnol. 32 (2014) 32–45. https://doi.org/10.1016/j.tibtech.2013.09.007.
12.    A. Hafnerovric, G.P. Lakos, I. Pepic, Nanotherapeutics in the EU: an overview on current state and future directions, Int. J. Nanomed. 9 (2014) 1005–1023. https://doi.org/10.2147/IJN.S55359.
13.    Nugraheni RW, Yusuf H, Setyawan D. Design of liposomes based vaccine adjuvant system. Asian Journal of Pharmacy and Technology. 2018; 8(4):261-3. 10.5958/2231-5713.2018.00040.5.
14.    Sheetal M. Development and Characterization of Docetaxel Encapsulated pH-Sensitive Liposomes for Cancer Therapy. Research Journal of Pharmaceutical Dosage Forms and Technology. 2013; 5(3):151-60.
15.    Nikam NR, Patil PR, Vakhariya RR, Magdum CS. Liposomes: A novel drug delivery system: An overview. Asian journal of pharmaceutical research. 2020; 10(1):23-8. https://doi.org/10.5958/2231-5691.2020.00005.2.
16.    Zhang X, Qi J, Lu Y, Hu X, He W, Wu W. Enhanced hypoglycemic effect of biotin-modified liposomes loading insulin: effect of formulation variables, intracellular trafficking, and cytotoxicity. Nanoscale Res Lett 2014; 9:185. https://doi.org/10.1186/1556-276X-9-185.
17.    Manconi M, Na´cher A, Merino V, Merino-Sanjuan M, Manca ML, Mura C, et al. Improving oral bioavailability and Pharmacokinetics of liposomal metformin by Glycerolphosphate-chitosan microcomplexation. AAPS PharmSciTech 2013; 14:485–96. https://doi.org/10.1208/s12249-013-9926-4.
18.    Niu M, Lu Y, Hovgaard L, Wu W. Liposomes containing glycocholate as potential oral insulin delivery systems: preparation, in vitro characterization, and improved protection against enzymatic degradation. Int J Nanomed 2011; 6:1155–66. https://doi.org/10.2147/IJN.S19917.
19.    Wu Z-H, Ping Q-N, Wei Y, Lai J-M. Hypoglycemic efficacy of chitosan-coated insulin liposomes after oral administration in mice. Acta Pharmacol Sin 2004; 25:966–72.
20.    Niu M, Lu Y, Hovgaard L, Guan P, Tan Y, Lian R, et al. Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: the effect of cholate type, particle size and administered dose. Eur J pharm Biopharm 2012; 81:265–72. https://doi.org/10.1016/j.ejpb.2012.02.009.
21.    Huang Y-Y, Wang C-H. Pulmonary delivery of insulin by liposomal carriers. J Control Release Off J Control Release Soc 2006; 113:9–14. https://doi.org/10.1016/j.jconrel.2006.03.014.
22.    Hanato J, Kuriyama K, Mizumoto T, Debari K, Hatanaka J, Onoue S, et al. Liposomal formulations of glucagon-like peptide-1: improved bioavailability and anti-diabetic effect. Int J Pharm 2009; 382:111–6. https://doi.org/10.1016/j.ijpharm.2009.08.013.
23.    X. Wu, X. Dai, Y. Liao, M. Sheng, X. Shi, Investigation on drug entrapment location in liposomes and transfersomes based on molecular dynamics simulation, J. Mol. Model. 2021; 27: 111. https://doi.org/10.1007/s00894-021-04722-3.
24.     S.K. Sahoo, V. Labhasetwar, Nanotech approaches to drug delivery and imaging, Drug Discov. Today. 2003; 8: 1112–1120. https://doi.org/10.1016/S1359-6446(03)02903-9.
25.    M.G. Calvagno, C. Celia, D. Paolino, D. Cosco, M. Iannone, F. Castelli, P. Doldo, M. Frest, Effects of lipid composition and preparation conditions on physical-chemical properties, technological parameters and in vitro biological activity of gemcitabine-loaded liposomes, Curr. Drug Deliv. 2007; 4: 89–101.
26.    A. Akbarzadeh, R. Rezaei-Sadabady, S. Davaran, S.W. Joo, N. Zarghami, Y. Hanifehpour, M. Samiei, M. Kouhi, K. Nejati-Koshki, Liposome: classification, preparation, and applications, Nanoscale Res. Lett. 2013; 8: 102. https://doi.org/10.1186/1556-276X-8-102.
27.    N. Monteiro, A. Martins, R.L. Reis, N.M. Neves, Liposomes in tissue engineering and regenerative medicine, J. R. Soc. Interface. 2014; 11: 20140459, 20140459. https://doi.org/10.1098/rsif.2014.0459.
28.    J. Li, X. Wang, T. Zhang, C. Wang, Z. Huang, X. Luo, Y. Deng, A review on phospholipids and their main applications in drug delivery systems, Asian J. Pharm. Sci. 2015; 10: 81–98. https://doi.org/10.1016/j.ajps.2014.09.004.
29.    L. Ramrakhiani, S. Chand, Recent progress on phospholipases: different sources, in: Assay Methods, Industrial Potential and Pathogenicity, Applied Biochemistry and Biotechnology.  2011; 164: 991–1022. https://doi.org/10.1007/s12010-011-9190-6.
30.    P. van Hoogevest, A. Wendel, The use of natural and synthetic phospholipids as pharmaceutical excipients, Eur. J. Lipid Sci. Technol. 2014; 116: 1088–1107. https://doi.org/10.1002/ejlt.201400219.
31.    Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon. 2022 May 1. https://doi.org/10.1016/j.heliyon.2022.e09394.
32.    Kegade P, Gade A, Sawant R, Parkar S. Liposomal drug delivery in Cancer. Asian Journal of Pharmaceutical Research. 2020; 10(4): 293-8. https://doi.org/10.5958/2231-5691.2020.00050.7.
33.    M.L. Briuglia, C. Rotella, A. McFarlane, D.A. Lamprou, Influence of cholesterol on liposome stability and on in vitro drug release, Drug Deliv. Transl. Res. 2015; 5: 231–242. https://doi.org/10.1007/s13346-015-0220-8.
34.    D. Cipolla, H. Wu, I. Gonda, S. Eastman, T. Redelmeier, H.-K. Chan, Modifying the release properties of liposomes toward personalized medicine. J. Pharmaceut. Sci. 2014; 103: 1851–1862. https://doi.org/10.1002/jps.23969.
35.    G. Bozzuto, A. Molinari, Liposomes as nanomedical devices. Int. J. Nanomed. 2015; 10:  975–999. https://doi.org/10.2147/IJN.S68861.
36.    E. Lee, A. Kim, Y.K. Oh, C.K. Kim, Effect of edge activators on the formation and transfection efficiency of ultradeformable liposomes, Biomaterials. 2005; 26: 205–210. https://doi.org/10.1016/j.biomaterials.2004.02.020.
37.    A. de la Maza, L. Coderch, O. Lopez, J. Baucells, J.L. Parra, Permeability changes caused by surfactants in liposomes that model the stratum corneum lipid composition, J. Am. Oil Chem. Soc. 1997; 74; 1–8. https://doi.org/10.1007/s11746-997-0111-3.
38.    Pattni, B.S., Chupin, V.V., Torchilin, V.P. New Developments in Liposomal Drug Delivery. Chem. Rev. 2015; 115: 10938–10966. https://doi.org/10.1021/acs.chemrev.5b00046.
39.    Bangham AD. Liposomes: the Babraham Connection. Chemistry and physics of lipids. 1993 Sep 1; 64(1-3): 275-85. https://doi.org/10.1016/0009-3084(93)90071-A.
40.    Meure, L.A., Foster, N.R., Dehghani, F. Conventional and dense gas techniques for the production of liposomes: A review. AAPS PharmSciTech. 2008. https://doi.org/10.1208/s12249-008-9097-x.
41.     P. Bhupendra, K. Narendra, S. Suman, R. Amit, Liposome: method of preparation, advantages, evaluation and its application, J. Appl. Pharmaceut. Res. 2015; 3: 1–8.
42.    N.Q. Shi, X.R. Qi, Preparation of drug liposomes by reverse-phase evaporation, in: W.L. Lu, X.R. Qi (Eds.), Liposome-Based Drug Delivery Systems, Springer Berlin Heidelberg, Berlin, Heidelberg. 2017: 1–10. https://doi.org/10.1007/978-3-662-49320-5_3.
43.    Wagner, A., Vorauer-Uhl, K. Liposome Technology for Industrial Purposes. J. Drug Deliv. 2011: 1–9. https://doi.org/10.1155/2011/591325.
44.    William, B., No´emie, P., Brigitte, E., G´eraldine, P., Supercritical fluid methods: An alternative to conventional methods to prepare liposomes. Chem. Eng. J. 2020https://doi.org/10.1016/j.cej.2019.123106.
45.    Justo, O.R., Moraes, A.M. Economical feasibility evaluation of an ethanol injection Liposome production plant. Chem. Eng. Technol. 2010; 33: 15–20. https://doi.org/10.1002/ceat.200800502.
46.    B. Maherani, E. Arab-Tehrany, M. Mozafari, C. Gaiani, L. M, Liposomes: a review of manufacturing techniques and targeting strategies, Curr. Nanosci. 2011; 7: 436–452. https://doi.org/10.2174/157341311795542453.
47.    Isalomboto Nkanga, C., Murhimalika Bapolisi, A., Ikemefuna Okafor, N., Werner Maçedo Krause, R. General Perception of Liposomes: Formation. Manufacturing and Applications, in: Liposomes - Advances and Perspectives. 2019. https://doi.org/10.5772/intechopen.84255.
48.    S. Vemuri, C.T. Rhodes, Preparation and characterization of liposomes as therapeutic delivery systems: a review, Pharm. Acta Helv. 1995; 70: 95–111. https://doi.org/10.1016/0031-6865(95)00010-7.
49.    W. Jiskoot, T. Teerlink, E.C. Beuvery, D.J. Crommelin, Preparation of liposomes via detergent removal from mixed micelles by dilution. The effect of bilayer composition and process parameters on liposome characteristics, Pharm. Weekbl. -Sci. Ed. 8 (1986) 259–265. https://doi.org/10.1007/BF01960070.
50.    M. Ueno, C. Tanford, J.A. Reynolds, Phospholipid vesicle formation using nonionic detergents with low monomer solubility. Kinetic factors determine vesicle size and permeability, Biochemistry. 1984; 23: 3070–3076. https://doi.org/10.1021/bi00308a034.
51.    H.G. Enoch, P. Strittmatter, Formation and properties of 1000-A-diameter, single-bilayer phospholipid vesicles, Proc. Natl. Acad. Sci. Unit. States Am. 1979; 76: 145. https://doi.org/10.1073/pnas.76.1.145.
52.    R.A. Schwendener, M. Asanger, H.G. Weder, n-alkyl-glucosides as detergents for the preparation of highly homogeneous bilayer liposomes of variable sizes (60–240 nm φ) applying defined rates of detergent removal by dialysis, Biochem. Biophys. Res. Commun. 1981; 100: 1055–1062. https://doi.org/10.1016/0006-291X(81)91930-6.
53.    M.H.W. Milsmann, R.A. Schwendener, H.-G. Weder, The preparation of large single bilayer liposomes by a fast and controlled dialysis, Biochim. Biophys. Acta Biomembr. 1978; 512: 147–155. https://doi.org/10.1016/0005-2736(78)90225-0.
54.    P. Schurtenberger, N. Mazer, S. Waldvogel, W. K€anzig, Preparation of monodisperse vesicles with variable size by dilution of mixed micellar solutions of bile salt and phosphatidylcholine, Biochim. Biophys. Acta Biomembr. 1984; 775: 111–114. https://doi.org/10.1016/0005-2736(84)90241-4.
55.    Schubert, R. Liposome Preparation by Detergent Removal. Methods Enzymol. 2003; 367: 46–70. https://doi.org/10.1016/S0076-6879(03)67005-9.
56.    Batzri, S., Korn, E.D. Single bilayer liposomes prepared without sonication. BBA - Biomembr. 1973; 298: 1015–1019. https://doi.org/10.1016/0005-2736(73)90408-2.
57.    Tejera-Garcia, R., Ranjan, S., Zamotin, V., Sood, R., Kinnunen, P.K.J. Making unilamellar liposomes using focused ultrasound. Langmuir. 2011; 27: 10088–10097. https://doi.org/10.1021/la201708x.
58.    Olson, F., Hunt, C.A., Szoka, F.C., Vail, W.J., Papahadjopoulos, D. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. BBA - Biomembr. 1979; 557: 9–23. https://doi.org/10.1016/0005-2736(79)90085-3.
59.    Wagner, A., Vorauer-Uhl, K., Katinger, H. Liposomes produced in a pilot scale: Production, purification and efficiency aspects. Eur. J. Pharm. Biopharm. 2002; 54: 213–219. https://doi.org/10.1016/S0939-6411(02)00062-0.
60.    Charcosset, C., El-Harati, A., Fessi, H. Preparation of solid lipid nanoparticles using a membrane contactor. J. Control. Release. 2005; 108: 112–120. https://doi.org/10.1016/j.jconrel.2005.07.023.
61.    Patil, Y.P., Jadhav, S., 2014. Novel methods for liposome preparation. Chem. Phys. Lipids. https://doi.org/10.1016/j.chemphyslip.2013.10.011.
62.    Karn, P.R., Hwang, S.J. Advances in liposome preparation methods. Liposomal Delivery Systems: Advances and Challenges. 2015: 6–23. https://doi.org/10.4155/9781910419052.fseb2013.14.67.
63.    Sharma A, Dhiman K, Sharma A, Goyal K, Pandit V, Ashawat MS, Jindal S. Application of Nanocarrier in Drug development with special Emphasis on Liposomes: A Review. Asian Journal of Pharmacy and Technology. 2022; 12(4): 320-8. 10.52711/2231-5713.2022.00052.
64.    Huang, Z., Li, X., Zhang, T., Song, Y., She, Z., Li, J., Deng, Y. Progress involving new techniques for liposome preparation. Asian J. Pharm. Sci. 2014. https://doi.org/10.1016/j.ajps.2014.06.001.
65.    Laouini, A., Jaafar-Maalej, C., Limayem-Blouza, I., Sfar, S., Charcosset, C., Fessi, H. Preparation, Characterization and Applications of Liposomes: State of the Art. J. Colloid Sci. Biotechnol. 2012; 1: 147–168. https://doi.org/10.1166/jcsb.2012.1020.
66.    Pauli, G., Tang, W.L., Li, S.D. Development and characterization of the solvent-assisted active loading technology (SALT) for liposomal loading of poorly water-soluble compounds. Pharmaceutics. 2019. https://doi.org/10.3390/pharmaceutics11090465.
67.    Li, T., Cipolla, D., Rades, T., Boyd, B.J. Drug nanocrystallisation within liposomes. J. Control. Release. 2018. https://doi.org/10.1016/j.jconrel.2018.09.001.
68.    S. Mahmood, U.K. Mandal, B. Chatterjee, M. Taher, Advanced characterizations of nanoparticles for drug delivery: investigating their properties through the techniques used in their evaluations, Nanotechnol. Rev. 2017; 6: 355–372. https://doi.org/10.1515/ntrev-2016-0050.
69.    S. Mourdikoudis, R.M. Pallares, N.T.K. Thanh, Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties, Nanoscale. 2018; 10: 12871–12934. https://doi.org/10.1039/C8NR02278J.
70.    A. Senn, P.-E. Pilet, Electrophoretic mobility, zeta potential and surface charges of maize root protoplasts, Z. Pflanzenphysiol. 1981; 102: 19–32. https://doi.org/10.1016/S0044-328X(81)80213-9.
71.    Z. Zhao, H. Katai, K. Higashi, K. Ueda, K. Kawakami, K. Moribe, Cryo-TEM and AFM observation of the time-dependent evolution of amorphous probucol nanoparticles formed by the aqueous dispersion of ternary solid dispersions, Mol.Pharm. 2019; 16: 2184–2198. https://doi.org/10.1021/acs.molpharmaceut.9b00158.
72.    S. Byrn, G. Zografi, X. Chen, Differential Scanning Calorimetry and Thermogravimetric Analysis. 2017:  124–141.
73.    A. Clout, A.B.M. Buanz, T.J. Prior, C. Reinhard, Y. Wu, D. O’Hare, G.R. Williams, S. Gaisford, Simultaneous differential scanning calorimetry-synchrotron X-ray powder diffraction: a powerful technique for physical form characterization in pharmaceutical materials, Anal. Chem. 2016; 88: 10111–10117. https://doi.org/10.1021/acs.analchem.6b02549.
74.    P. Panwar, B. Pandey, P.C. Lakhera, K.P. Singh, Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes, Int. J. Nanomed. 2010; 5: 101–108. https://doi.org/10.2147/IJN.S8030.
75.    S.J. Wallace, J. Li, R.L. Nation, B.J. Boyd, Drug release from nanomedicines: selection of appropriate encapsulation and release methodology, Drug Deliv. Transl. Res. 2012; 2: 284–292. https://doi.org/10.1007/s13346-012-0064-4.
76.    Antimisiaris, S.G., Kallinteri, P., Fatouros, D.G. Liposomes and Drug Delivery. Pharmaceutical Manufacturing Handbook: Production and Processes. 2007: 443533. https://doi.org/10.1002/9780470259818.ch13.
77.    Shivhare SC, Malviya KG, Jain V, Negi G. A Review on Liposomes as a Novel Drug Delivery System. Research Journal of Pharmaceutical Dosage Forms and Technology. 2011; 3(5):193-8.

Recomonded Articles:

Author(s): Manukondakeerthi, Lakshmiprasanna. J, Santhosh aruna M, Rama Rao N

DOI:         Access: Open Access Read More

Author(s): Vishal Kumar, Attish Bhardwaj, Navdeep Singh, Kamya Goyal, Shammy Jindal

DOI: 10.52711/2231-5659.2021.00038         Access: Open Access Read More

Author(s): Lakshmi Prasanna J., Deepthi B., Rama Rao N.

DOI:         Access: Open Access Read More

Author(s): Sable Kundan Dattatraya, Sable Kiran Dattatray, Kathwate Ganesh Sunil, Mane Snehal Suryakant

DOI: 10.5958/2231-5659.2020.00027.2         Access: Open Access Read More

Author(s): Saudagar R. B., Sarika V. Khandbahale

DOI: 10.5958/2231-5659.2017.00005.4         Access: Open Access Read More

Author(s): Ismail Hussain, Ravikumar, Narayanaswamy VB, Injamamul Haque, Mohibul Hoque

DOI: 10.5958/2231-5659.2016.00030.8         Access: Open Access Read More

Author(s): Aprajita Shifali, Pravin Kumar, Vinay Pandit

DOI: 10.5958/2231-5659.2021.00012.6         Access: Open Access Read More

Author(s): Ch. Nagadev, M. Durga Srinivasa Rao, P. Venkatesh, D. Hepcykalarani, R. Prema

DOI: 10.5958/2231-5659.2020.00021.1         Access: Open Access Read More

Author(s): Pankaj R. Dhapake, Chauriya C.B., Umredkar R.C.

DOI: 10.5958/2231-5659.2017.00001.7         Access: Open Access Read More

Author(s): Pradnya M. Khandagale, Bhushan Bhairav, R.B. Saudagar

DOI: 10.5958/2231-5659.2017.00010.8         Access: Open Access Read More

Author(s): Niraj Kale, Sanket Rathod, Snehal More, Namdeo Shinde

DOI: 10.52711/2231-5659.2021.00047         Access: Open Access Read More

Author(s): Surekha Baghel, Bina Gidwani, Chanchal Deep Kaur

DOI: 10.5958/2231-5659.2017.00009.1         Access: Open Access Read More

Author(s): Sana Banu, Syeda Ayesha Farheen

DOI: 10.5958/2231-5659.2019.00015.8         Access: Open Access Read More

Author(s): Sanjay S. Patel, Poojan N. Patel

DOI: 10.52711/2231-5659.2023.00004         Access: Open Access Read More

Author(s): Pratibha Gavarkar, Pramod Patil, Akshay Sutar, Shridhar Rasal, Dyaneshwar Surwase

DOI: 10.5958/2231-5659.2016.00029.1         Access: Open Access Read More

Author(s): D.M. Shinkar, Bhushan S Bhamare, R.B. Saudagar

DOI: 10.5958/2231-5659.2016.00011.4         Access: Open Access Read More

Author(s): Yogita Rayate, Shital Shewale, Aishwarya Patil, Manojkumar Nitalikar, Shrinivas Mohite

DOI: 10.5958/2231-5659.2018.00027.9         Access: Open Access Read More

Author(s): Aduema W., Amah A. K, Wariso A.C

DOI: 10.5958/2231-5659.2018.00001.2         Access: Open Access Read More

Author(s): G. Lakshmana Murthy, Majunath U Machale1, Vasia, N. Balireddy, C. Chandrika

DOI: 10.5958/2231-5659.2019.00034.1         Access: Open Access Read More

Asian Journal of Research in Pharmaceutical Sciences (AJPSci) is an international, peer-reviewed journal, devoted to pharmaceutical sciences....... Read more >>>

RNI: Not Available                     
DOI: 10.52711/2231-5659 


Recent Articles




Tags