Author(s):
Tanmay Jit, Dibyendu Shil, Ramesh Kumari Dasgupta, Sanglap Mallick, Saptarshi Mukherjee
Email(s):
tanmayjit2016@gmail.com
DOI:
10.52711/2231-5659.2023.00050
Address:
Tanmay Jit1*, Dibyendu Shil2, Ramesh Kumari Dasgupta3, Sanglap Mallick1, Saptarshi Mukherjee4
1Department of Pharmaceutics, Mata Gujri College of Pharmacy, Mata Gujari University, Kishanganj, Bihar, 855107, India.
2Department of Pharmacognosy, Mata Gujri College of Pharmacy, Mata Gujari University, Kishanganj, Bihar, 855107, India.
3Department of Pharmaceutical Chemistry, Mata Gujri College of Pharmacy, Mata Gujari University, Kishanganj, Bihar, 855107, India.
4Department of Pharmaceutical Technology, University of North Bengal, Raja Ramohanpur,
Darjeeling-734013, India.
*Corresponding Author
Published In:
Volume - 13,
Issue - 4,
Year - 2023
ABSTRACT:
The majority of the active pharmaceutical components have issues with poor solubility, bioavailability, chemical stability, and moisture absorption. Pharmaceutical crystals are a reliable way to change the aforementioned physicochemical properties of drugs without changing their pharmacological behaviour. However, the success of these approaches depends on the physical and chemical properties of the molecules being developed. The development of drug products with superior physicochemical characteristics, such as melting point, tablet ability, solubility, stability, bioavailability, and permeability, while preserving the pharmacological properties of the active pharmaceutical ingredient is greatly facilitated by co-crystallization of drug substances. All the components of a cocrystal, which is a stoichiometric homogeneous multicomponent system connected by non-covalent interactions, are solid under ambient conditions.
Cite this article:
Tanmay Jit, Dibyendu Shil, Ramesh Kumari Dasgupta, Sanglap Mallick, Saptarshi Mukherjee. Cocrystal: A Review on the Design and Preparation of Pharmaceutical Cocrystals. Asian Journal of Research in Pharmaceutical Sciences. 2023; 13(4):296-2. doi: 10.52711/2231-5659.2023.00050
Cite(Electronic):
Tanmay Jit, Dibyendu Shil, Ramesh Kumari Dasgupta, Sanglap Mallick, Saptarshi Mukherjee. Cocrystal: A Review on the Design and Preparation of Pharmaceutical Cocrystals. Asian Journal of Research in Pharmaceutical Sciences. 2023; 13(4):296-2. doi: 10.52711/2231-5659.2023.00050 Available on: https://ajpsonline.com/AbstractView.aspx?PID=2023-13-4-5
REFERENCES:
1. Thakuriaa R, Deloria A, Jonesa W, Maya P, Royb LL, Nair Hornedob NR. Pharmaceutical cocrystals and poorly soluble drugs. International Journal of Pharmaceutics. 2013; 453: 101– 125.
2. Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G, Pharmaceutical cocrystals: An overview. International Journal of Pharmaceutics. 2011; 419: 1– 11.
3. David P. Eldera, Holmb R, Diegob H, Use of pharmaceutical salts and cocrystals to address the issue of poor solubility. International Journal of Pharmaceutics. 2013; 453: 88– 100.
4. Shan N, Michael J. Zaworotko. The role of cocrystals in pharmaceutical science, Drug DiscoveryToday. 9/1013(2008).
5. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/defaul t.htm , Guidance for industry, Regulatory classification of Pharmaceutical cocrystals U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) April 2013.
6. Vishweshwar P, McMahon J.A., Bis J.A., Zaworotko M.J. Pharmaceutical cocrystals. J. Pharm. Sci. 2006; 95: 499–516.
7. Upadhyay N, Shukla T P, Mathur A, Manmohan, Jha S K, Pharmaceutical Cocrystal: An Emerging approach to improve physical property. International Journal of Pharmaceutical Sciences Review and Research. 2011; 8(1): 144-148.
8. Sulbha R. Fukte, Milind P., Rawat S, Coformer Selection: An Important Tool in Cocrystal Formation. International Journal of Pharmacy and Pharmaceutical science. 2014; 6(7).
9. Jagadeesh N, L. Reddy S and Nangia A, Amide-N-Oxide heterosynthone and anide dimer homosynthone in cocrystals of carboxamide drugs and pyridine N-oxide. American Chemical Society. 2007; 4: 417-434.
10. Mohammad AM, Amjad A, Velaga SP. Hansen solubility parameter as a tool to predict the cocrystal formation. Int. J Pharm, 2011; 407: 63-71.
11. 11.Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G. Pharmaceutical cocrystals: An overview. International Journal of Pharmaceutics. 2011; 419: 1– 11.
12. Thakuriaa R, Deloria A, Jonesa W, Maya P. Lipertb, Royb L, Rodriguez-Hornedob N, Pharmaceutical cocrystals and poorly soluble drugs. International Journal of Pharmaceutics. 2013; 453: 101– 125.
13. Good D.J., Rodríguez-Hornedo N. Solubility advantage of pharmaceutical cocrystals. Cryst. Growth Des. 2009; 9: 2252–2264.
14. Serajuddin A.T.M. Salt Formation to Improve Drug Solubility. Adv. Drug Delivery Rev. 2007; 603–616.
15. Childs S.L., Rodriguez-Horned N., Reddy L.S., Jayasankar A., Maheshwari C., McCausland L., Shipplett R., Stahly B.C., 2008. Screening strategies based on
16. Bengt L. and Ake C. Rasmuson, Semibatch reaction crystallization of benzoic acid.
17. Padrela L., Rodrigues M.A., Velaga S.P., Matos H.A., Azevedo D, E.G. Formation of indomethacin–saccharin cocrystals using supercritical fluid technology. Eur. J. Pharm. Sci. 2009; 38: 9–17.
18. Dhumal R.S., Biradar S.V., Paradkar A.R., York, P. Ultrasound assisted engineering of lactose crystals. Pharm. Res. 2008; 25: 2835–2844.
19. Aher S., Dhumal R., Mahadik K., Paradkar A., York P., Ultrasound assisted cocrystallization from solution (USSC) containing a non-congruently soluble cocrystal component pair: caffeine/maleic acid. Eur. J. Pharm. Sci. 2010; 41: 597–602.
20. Vitthalrao M, Neeraj Kumar F, Radheshyam K.B., Cocrystalization: An alternative approach for solid modification, Journal of Drug Delivery & Therapeutics. 2013; 3(4): 166-172.
21. Bryn S. R., Pfeiffer R. R., Stowell J. G., Eds, Solid-State Chemistry of Drugs. 2nd ed.; SSCI, Inc. West Lafayette, IN, 1999.
22. Blagden N., de Matas M., Gavan P.T., York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv. Drug Deliv. Rev., 2007; 59: 617–630.
23. Schultheiss N., Newman A. Pharmaceutical cocrystals and their physicochemical properties. Cryst. Growth Des. 2009; 9: 2950–2967.
24. Intrinsic dissolution and Woods apparatus, U.S. Pharmacopeia, 2008; 1: 526.
25. Milani Z. Jalali B.M., Azimi M, Valizadeh H., Biopharmaceutical classification of drugs using intrinsic dissolution rate (IDR) and rat intestinal permeability. European Journal of Pharmaceutics and Biopharmaceutics. 2009; 73: 102–106.
26. Shargel L., Yu A.B., 1999. Applied Biopharmaceutics & Pharmacokinetics, fourth ed. McGraw-Hill. New York.
27. David S.E., Timmins P., Conway B.R. Impact of the counterion on the solubility and physicochemical properties of salts of carboxylic acid salts. Drug Dev. Ind. Pharm. 2012; 38: 93–103.
28. Stanton M.K., Kelly R.C., Colletti A., Langley M., Munson, E.J., Peterson, M.L., Roberts, J., Wells, M., Improved pharmacokinetics of AMG 517 through co- crystallization Part 2: Analysis of 12 carboxylic acid co-crystals. J. Pharm. Sci. 2011; 100: 2734–2743.
29. Bettis, J.W., Lach, J.L., Hood, J. Effect of complexation with phenobarbital on the biologic availability of theophyline from three tablet formulastions. Am. J. Hosp. Pharm. 1973; 30: 240–243.
30. Lee S., Hoff C. Large scale aspects of salt formation: processing of intermediates and final products. In: Stahl, P.H., Wermuth, G. (Eds.). Handbook of Pharmaceutical Salts; Properties, Selection and Use. Wiley-VCH, Weinheim, 2002; 191–220.
31. Shayanfar A, Jouyban A. Physicochemical characterization of a new cocrystal of ketoconazole. Powder Technology. 2014; 262: 242–248.
32. Huang Y, Zhang B, Gao Y, Zhang J, Shi L. Baicalein– Nicotinamide Cocrystal with Enhanced Solubility, Dissolution, and Oral Bioavailability, Journal of Pharmaceutical Sciences. 2014; 103: 2330–2337.
33. Andrew V. Trask, Motherwell W.D.S, Jones W. Physical stability enhancement of theophylline via cocrystallization, International Journal of Pharmaceutics. 2006; 320: 114–123.
34. Adam J. Smith, Kavuru P, Wojtas L, Zaworotko J. M., and Shytle R.D., Cocrystals of Quercetin with Improved Solubility and Oral Bioavailability. Molecular Pharmaceutics. 2008; 210: 120-134
35. Courtney A. Ober, Stephen E., Montgomery, Gupta B.R., Formation of itraconazole/Lmalic acid cocrystals by gas antisolvent cocrystallisation. Powder Technology. 2013; 236: 122–131.
36. Vervaet C. C., Formulation of itraconazole nanococrystals and evaluation of their bioavailability in dogs. European Journal of Pharmaceutics and Biopharmaceutics. 2014; 87: 107-113.
37. Bothiraja C., Atmaram P., and Ashwin J. Mali, Improved pharmaceutical properties of surface modified bioactive plumbagin crystals, Int. J. Surface Science and Engineering, 2013; 7: 2.
38. Shimada H, Possible mechanism of superoxide formation through redox cycling of plumbagin in pig heart. Toxicology in Vitro, 2012; 26: 252-257.
39. Bothiraja C., Atmaram P., Ganesh Y., Prajakta P. , Karimunnisa S., Novel solvent‐free gelucire extract of Plumbago zeylanica using non-everted rat intestinal sac method for improved therapeutic efficacy of Plumbagin. Journal of Pharmacological and Toxicological Methods. 2012; 66: 35-42.
40. Kumar S, Gautam S., Sharma A., Antimutagenic and antioxidant properties of plumbagin and other naphthoquinones. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2013; 755: 30-41.
41. Almarsson O, Zaworotko MJ. Crystal engineering of the composition of pharmaceutical phase. Do pharmaceutical cocrystals represent a new path to improved medicines? Chem Commun. 2004: 1889-96.
42. Bhogala B.R., Basavoju S., Nangia A. Tape and layer structures in cocrystals of some diand tricarboxylic acids with 4, 4-bipyridines and isonicotinamide. From binary to ternary cocrystals. Cryst Eng Comm. 2005; 7: 551-62.
43. Morissette S.L., Almarsson O., Peterson M.L, Remenar J.F, Read MJ, Lemmo A.V., High-throughput crystallization: polymorphs, salts, cocrystals and solvates of pharmaceutical solids. Adv Drug Deliv Rev., 2004; 56: 275-300.
44. Madusanka N, Eddleston M, Arhangelskis M, Jones W. Polymorphs, hydrates and solvates of a co-crystal of caffeine with anthranilic acid. Acta Crystallogr B Struct Sci Cryst Eng Mater, 2014; 70: 72-80
45. Aitipamula S, Banerjee R, Bansal A.K, Biradha K, Cheney M.L. Polymorphs, Salts, and Cocrystals: What’s in a Name? Crystal Growth Design. 2012; 12:2147-52.
46. Sommerdijk N., Crystal Design and Crystal Engineering. Angew. Chem. Int. Ed. 2003, 42, 3572– 74.
47. Prashant M., Azim Y., Tejender S. Thakur, and Gautam R. Desiraju. Co-Crystals of the Anti-HIV Drugs Lamivudine and Zidovudine. Crystal Growth & Design. 2009; 9:(2):951–957.
48. Sanphui P, Rajesh N., Khandavilli R., and Nangia A., Fast Dissolving Curcumin Cocrystals. Cryst. Growth Des. 2011, 11, 4135–4145.
49. Horst J.H., M. A. Deij A.M., and Cains W.P., Discovering New Co-Crystals. Crystal Growth & Design. 2009; 9(3).
50. Sreenivas L. R., Sarah J. B, Kampf W, J, and Rodriguez-Hornedo N. Cocrystals and Salts of Gabapentin: pH Dependent Cocrystal Stability and Solubility. Crystal Growth & Design. 2009; 9(1): 378–385.
51. Sanphui P, Sudalai K.S, and Nangia A. Pharmaceutical Cocrystals of Niclosamide Cryst. Growth Des. 2012; 12: 4588−4599.
52. Scott L. C., Kenneth I. Hardcastle. Cocrystals of Piroxicam with Carboxylic Acids. Crystal Growth & Design, Vol. 2007; 7(7): 1291 1304
53. Aitipamula S, Banerjee R, Bansal AK, Biradha K, Cheney ML et al. Polymorphs, Salts, and Cocrystals: What’s in a Name? Crystal Growth Design. 2012; 12: 2147-52.
54. Sommerdijk N. Crystal Design and Crystal Engineering. Angew. Chem. Int. Ed. 2003, 42; 3572– 74.
55. Prashant M. B., Azim Y, Tejender S. Thakur, and Gautam R. Desiraju. Co-Crystals of the Anti-HIV Drugs Lamivudine and Zidovudine. Crystal Growth & Design. 2009; 9:(2):951–957.
56. Sanphui P, Rajesh G.N., Khandavilli R., and Nangia A. Fast Dissolving Curcumin Cocrystals. Cryst. Growth Des. 2011; 11: 4135–4145.
57. Horst J.H., Deij A.M., and Cains W.P., Discovering New Co-Crystals. Crystal Growth & Design. 2009; 9(3).
58. Sreenivas R. L., Sarah J. B., Kampf W. J, and Rodriguez-Hornedo N. Cocrystals and Salts of Gabapentin: pH Dependent Cocrystal Stability and Solubility. Crystal Growth & Design. 2009; 9(1): 378–385.
59. Sanphui P., Sudalai K.S., and Nangia A. Pharmaceutical Cocrystals of Niclosamide Cryst. Growth Des. 2012; 12: 4588−4599.
60. Scott L. Childs, Kenneth I. Hardcastle. Cocrystals of Piroxicam with Carboxylic Acids. Crystal Growth & Design. 2007; 7(7): 1291 1304
61. Vijayaraj S., Kumar A.S. Pharmaceutical approach to supramolecular chemistry – a comprehensive review. Int J Pharm Dev Technol. 2013; 3(1): 35–40.
62. Reddy L.S, Bethune S.J, Kampf J.W, Rodrı́guez-Hornedo N. Cocrystals and Salts of Gabapentin: pH Dependent Cocrystal Stability and Solubility. Cryst Growth Des [Internet]. 2009; 9(1): 378–85.
63. Prasad R.V, Rakesh M.G, Jyotsna R.M, Mangesh S.T, Sapkale P, Mayur P.K. Pharmaceutical Cocrystallization : A Review. Int J Pharm Chem Sci. 2012; 1(3):725–36.