Author(s):
Sourabh D Jain, Sumeet Prachand, Arun K Gupta, Sanjay Jain
Email(s):
sourabhjain072@gmail.com
DOI:
10.52711/2231-5659.2023.00057
Address:
Sourabh D Jain1,2*, Sumeet Prachand1, Arun K Gupta2, Sanjay Jain1
1Faculty of Pharmacy, Medicaps University, Indore (M.P.) – India.
2Chameli Devi Institute of Pharmacy, Indore (M.P.)-India.
*Corresponding Author
Published In:
Volume - 13,
Issue - 4,
Year - 2023
ABSTRACT:
According to the World Health Organization (WHO), tuberculosis (TB) remains one of the top 10 causes of death worldwide. Tuberculosis is a major global health threat. In 2022, an estimated 10 million people worldwide developed TB disease, and there were about 1.5 million TB-related deaths. TB primarily affects low- and middle-income countries, with the highest burden in Africa, Asia, and the Western Pacific regions. The WHO has launched the "End TB Strategy" with the aim of eliminating TB as a public health problem by 2035. Early diagnosis and prompt initiation of treatment are essential for effective TB control. WHO recommends a package of interventions known as "Directly Observed Treatment, Short-course" (DOTS) for TB control, which includes standardized diagnostic approaches, access to quality-assured drugs, and supportive treatment adherence measures. Tuberculosis (TB) remains a global health burden, necessitating the development of new therapeutic strategies. Fluoroquinolones (FQs) have emerged as promising agents in the treatment of TB due to their potent antimicrobial activity against Mycobacterium tuberculosis (Mtb) and their ability to penetrate intracellular compartments. This review aims to summarize the current knowledge on the use of FQs as antitubercular agents, highlighting their mechanisms of action, efficacy and limitations.
Cite this article:
Sourabh D Jain, Sumeet Prachand, Arun K Gupta, Sanjay Jain. Fluoroquinolones for the Treatment of Tuberculosis: An Overview. Asian Journal of Research in Pharmaceutical Sciences. 2023; 13(4):333-7. doi: 10.52711/2231-5659.2023.00057
Cite(Electronic):
Sourabh D Jain, Sumeet Prachand, Arun K Gupta, Sanjay Jain. Fluoroquinolones for the Treatment of Tuberculosis: An Overview. Asian Journal of Research in Pharmaceutical Sciences. 2023; 13(4):333-7. doi: 10.52711/2231-5659.2023.00057 Available on: https://ajpsonline.com/AbstractView.aspx?PID=2023-13-4-12
REFERENCES:
1. Sandhu, G. Tuberculosis: Current situation, challenges and overview of its control programs in India. Journal of Global Infectious Diseases. 2011; 3(2): 143.
2. World Health Organization. Global Tuberculosis Report 2022 (WHO, 2022)
3. World Health Organization. Global Tuberculosis Report 2022 (WHO, 2021)
4. World Health Organization. Global Tuberculosis Report 2022 (WHO, 2020)
5. Natarajan, A., Beena, P. M., Devnikar, A., Mali, S. A systemic review on tuberculosis. Indian Journal of Tuberculosis. 2020.
6. Sharma SK, Mohan A. Tuberculosis: from an incurable scourge to a curable disease- journey over a Millennium. Indian J Med Res. 2013.
7. Boom, W. H., Schaible, U. E. Achkar, J. M. The knowns and unknowns of latent Mycobacterium tuberculosis infection. J. Clin. Invest. 2021; 131.
8. J. Chakaya, M. Khan, F. Ntoumi et al., Global Tuberculosis Report 2020 - Reflections on the Global TB burden, treatment and prevention efforts. International Journal of Infectious Diseases. 2021; 113(1): S7–s12.
9. Sotgiu, G., Centis, R., D’ambrosio, L., Migliori, G. B. Tuberculosis Treatment and Drug Regimens. Cold Spring Harbor Perspectives in Medicine. 2015; 5(5)
10. Mase, S. R., Chorba, T. Treatment of Drug-Resistant Tuberculosis. Clinics in Chest Medicine. 2019; 40(4): 775–795.
11. Pham, T. D. M., Ziora, Z., Blaskovich, M. Quinolone Antibiotics. MedChemComm. 2019
12. Emami S, Shafiee A, Foroumadi A. Quinolones: recent structural and clinical Developments, Iranian Journal of Pharmaceutical Research. 2005; 3: 123-125.
13. Emami S, Shafiee A, Foroumadi A. Quinolones: Recent structural and clinical developments. Iranian Journal of Pharmaceutical Research. 2005; 3:123-136.
14. Rabahi, M. F., Silva Júnior, J. L. R. da, Ferreira, A. C. G., Tannus-Silva, D. G. S., Conde, M. B. Tuberculosis treatment. Jornal Brasileiro de Pneumologia. 2017; 43(6): 472–486.
15. Méchaï, F., Cordel, H., Guglielmetti, L., Aubry, A., Jankovic, M., Viveiros, M., Cambau, E. Management of Tuberculosis: Are the Practices Homogeneous in High-Income Countries? Frontiers in Public Health. 2020: 8.
16. Migliori GB, Sotgiu G, Rosales-Klintz S, Centis R, D’Ambrosio L, Abubakar I, et al. ERS/ECDC Statement: European Union Standards for Tuberculosis Care, 2017 update. Eur Respir J. 2018.
17. Bendre, A. D., Peters, P. J., Kumar, J. Tuberculosis: Past, present and future of the treatment and drug discovery research. Current Research in Pharmacology and Drug Discovery. 2021, 2.
18. Zhanel, G. G., Walkty, A., Vercaigne, L., Karlowsky, J. A., Embil, J., Gin, A. S., Hoban, D. J. The New Fluoroquinolones: A Critical Review. Canadian Journal of Infectious Diseases. 1999;10(3):207–238.
19. Sourabh D Jain, Arun Kumar Gupta. Chemistry of Fluoroquinones in the Management of Tuberculosis (TB): An Overview. Asian J. Pharm. Res. 2021; 11(1): 55-59.
20. Mogle BT, Steele JM, Thomas SJ, Bohan KH, Kufel WD. Clinical review of delafloxacin: a novel anionic fluoroquinolone. The Journal of Antimicrobial Chemotherapy. 2018; 73(6): 1439-1451.
21. Naeem A, Badshah SL, Muska M, Ahmad N, Khan K. The Current Case of Quinolones: Synthetic Approaches and Antibacterial Activity. Molecules (Basel, Switzerland). 2016; 21(4): 268.
22. Shandil RK, Jayaram R, Kaur P et al. Moxifloxacin, ofloxacin, sparfloxacin, and ciprofloxacin against Mycobacterium tuberculosis: evaluation of in vitro and pharmacodynamic indices that best predict in vivo efficacy. Antimicrob Agents Chemother. 2007; 51(2): 576–582.
23. Velyati AA, Masjedi MR, Farnia P, Tabarsi P, Ghanavi J, Ziazarifi AH, Hoffner SE. Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in iran. Chest. 2009; 136 (2): 420–425.
24. Ramanjeet Kaur Brar, Uma Jyoti, Rajesh Kumari Patil, Hanumanthrao Chadershekar Patil. Fluoroquinolone antibiotics: An overview Adesh University Journal of Medical Sciences & Research. 2020; 2(1): 26-30
25. Devaleenal Daniel B, Ramachandran G, Swaminathan S. The challenges of pharmacokinetic variability of first-line anti-TB drugs. Expert Rev Clin Pharmacol. 2017; 10(1): 47–58.
26. Asif M, Siddiqui AA, Husain A. Quinolone derivatives as antitubercular drugs. Medicinal Chemistry Research. 2013; 22(3): 1029–1042.
27. Conde MB, Efron A, Loredo C, De Souza GR, Grac¸a NP, Cezar MC, Ram M, Chaudhary MA, Bishai WR, Kritski AL, et al. Moxifloxacin versus ethambutol in the initial treatment of tuberculosis: a doubleblind, randomised, controlled phase II trial. Lancet. 2009; 373: 1183– 1189.
28. Blondeau, J. M. Fluoroquinolones: mechanism of action, classification, and development of resistance. Survey of Ophthalmology. 2004; 49(2): S73–S78.
29. Pranger, A. D., van der Werf, T. S., Kosterink, J. G. W., Alffenaar, J. W. C. The Role of Fluoroquinolones in the Treatment of Tuberculosis in 2019. Drugs.
30. Naber, K. G., Adam, D. Classification of fluoroquinolones. International Journal of Antimicrobial Agents. 1998; 10(4): 255–257.
31. Aldred, K. J., Kerns, R. J., Osheroff, N. Mechanism of Quinolone Action and Resistance. Biochemistry. 2014; 53(10): 1565–1574.
32. Bush, N. G., Diez-Santos, I., Abbott, L. R., Maxwell, A. Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance. Molecules. 2020; 25(23): 5662.
33. Hooper, D. C., Jacoby, G. A. Topoisomerase Inhibitors: Fluoroquinolone Mechanisms of Action and Resistance. Cold Spring Harbor Perspectives in Medicine. 2016:6(9).
34. Zhao, X., Xu, C., Domagala, J., Drlica, K. DNA topoisomerase targets of the fluoroquinolones: A strategy for avoiding bacterial resistance. Proceedings of the National Academy of Sciences.1997; 94(25): 13991–13996.
35. Mustaev, A., Malik, M., Zhao, X., Kurepina, N., Luan, G., Oppegard, L. M. Drlica, K. Fluoroquinolone-Gyrase- DNA Complexes. Journal of Biological Chemistry. 2014; 289(18): 12300–12312.