Author(s):
Dhapake P. R, Baheti J. R, Suruse P.
Email(s):
pankajdhpk4@gmail.com
DOI:
10.52711/2231-5659.2023.00025
Address:
Dhapake P. R*, Baheti J. R, Suruse P.
Kamla Nehru College of Pharmacy, Butibori, Nagpur - 441108, Maharashtra, India.
*Corresponding Author
Published In:
Volume - 13,
Issue - 2,
Year - 2023
ABSTRACT:
Protein drugs are the biological drug which cannot be administered orally due to problems related to degradation of protein complex in the acidic and protease-rich environment of the gastrointestinal (GI) tract. High molecular weight of protein drugs often results in poor absorption into the periphery when administered orally. Thus, generally protein drugs administered by injection. Most of the proteins drug have a short serum half-life which need to be administered frequently or in high doses to achieve the therapeutic effectiveness. Frequent dosing of these drugs by injection make patient uncomfortable and cumulative doses also may produce severe side effect due to unspecific binding of drug to non-targeted tissue. So, these difficulties in the administration of protein drugs provides the motivation for preparation of novel drug delivery systems (DDSs) In which drug will protect form biological and chemical degradation in the body and able to release drug for long time after oral administration. Encapsulation of proteins drug in a polymeric nanoparticle has been a widely investigated technology for protein drug delivery. Some ligand enhances the penetration of nanoparticles across the intestinal epithelial cell thus the ligand conjugated polymer can use to enhance the penetration of protein drug across the intestine.
Cite this article:
Dhapake P. R, Baheti J. R, Suruse P. Nanoparticulate Drug Delivery: A Promising Drug Delivery for Protein Drug. Asian Journal of Research in Pharmaceutical Sciences. 2023; 13(2):139-4. doi: 10.52711/2231-5659.2023.00025
Cite(Electronic):
Dhapake P. R, Baheti J. R, Suruse P. Nanoparticulate Drug Delivery: A Promising Drug Delivery for Protein Drug. Asian Journal of Research in Pharmaceutical Sciences. 2023; 13(2):139-4. doi: 10.52711/2231-5659.2023.00025 Available on: https://ajpsonline.com/AbstractView.aspx?PID=2023-13-2-11
REFERENCES:
1. Vyas SP, Khar RK. Targeted and controlled drug delivery: novel carrier systems. CBS publishers and distributors; 2004.
2. Satyanarayan U, and Chakrapani. Biochemistry, 3rd Ed., Books and allied (p) Ltd., Kolkata,; U (2008)
3. Langer R, Folkman J. Polymers for the sustained release of proteins and other macromolecules. Nature. 1976; 263(5580): 797-800. doi: 10.1038/263797a0.
4. Al-Tahami K, Singh J. Smart polymer based delivery systems for peptides and proteins. Recent Pat Drug Deliv Formul. 2007; 1(1): 65-71. doi: 10.2174/187221107779814113.
5. Murdan S, van den Bergh B, Gregoriadis G, Florence AT. Water-in-sorbitan monostearate organogels (water-in-oil gels). J Pharm Sci. 1999; 88(6): 615-9. doi: 10.1021/js980343j.
6. Chein YW, Novel drug delivery systems 50, second edition, 715.
7. Sharma G, Sharma AR, Nam JS, Doss GP, Lee SS, Chakraborty C. Nanoparticle based insulin delivery system: the next generation efficient therapy for Type 1 diabetes. J Nanobiotechnology. 2015 Oct 24; 13: 74. doi: 10.1186/s12951-015-0136-y.
8. Dhapake PR, Avari JG. Application of polymeric nanoparticles in oral delivery of recombinant human erythropoietin: A review. Journal of Drug Delivery and Therapeutics. 2019; 9(1-s): 403-7. DOI:10.22270/jddt.v9i1-s.2336
9. Lagassé HA, Alexaki A, Simhadri VL, Katagiri NH, Jankowski W, Sauna ZE, Kimchi-Sarfaty C. Recent advances in (therapeutic protein) drug development. F1000Res. 2017 Feb 7; 6: 113. doi: 10.12688/f1000research.9970.1.
10. Herrero EP, Alonso MJ, Csaba N. Polymer-based oral peptide nanomedicines. Ther Deliv. 2012; 3(5): 657-68. doi: 10.4155/tde.12.40.
11. Damgé C, Maincent P, Ubrich N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J Control Release. 2007; 117(2): 163-70. doi: 10.1016/ j.jconrel.2006.10.023.
12. Kurian G, Seetharaman A, Subramanian N, Paddikkala J. A Novel Approach for Oral Delivery of Insulin via Desmodium gangeticum Aqueous Root Extract. J Young Pharm. 2010; 2(2): 156-61. doi: 10.4103/0975-1483.63158.
13. Woitiski CB, Carvalho RA, Ribeiro AJ, Neufeld RJ, Veiga F. Strategies toward the improved oral delivery of insulin nanoparticles via gastrointestinal uptake and translocation. BioDrugs. 2008; 22(4): 223-37. doi: 10.2165/00063030-200822040-00002.
14. Savale SK. Protein and peptide drug delivery system. World J Pharm Pharm Sci. 2016; 5(4): 1-9.10.20959/wjpps20164-6425
15. Patel J, Chauhan S, Seth A. Formulation and Evaluation of Methotrexate Loaded Nanoparticle. International Journal of Drug Discovery and Medical Research. 2012; 2:1: 56-60
16. Sharma, G., Sharma, A.R., Nam, JS. et al. Nanoparticle based insulin delivery system: the next generation efficient therapy for Type 1 diabetes. J Nanobiotechnol 13, 74 (2015). doi.org/10.1186/ s12951-015-0136-y
17. Varma MV, Ashokraj Y, Dey CS, Panchagnula R. P-glycoprotein inhibitors and their screening: a perspective from bioavailability enhancement. Pharmacol Res. 2003; 48(4): 347-59. doi: 10.1016/ s1043-6618(03)00158-0.
18. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010; 75(1): 1-18. doi: 10.1016/ j.colsurfb.2009.09.001.
19. Chakraborty C, Pal S, Doss GP, Wen ZH, Lin CS. Nanoparticles as' smart'pharmaceutical delivery. Frontiers in bioscience (Landmark edition). 2013; 18: 1030-50. doi.org/10.2741/4161
20. des Rieux A, Fievez V, Garinot M, Schneider YJ, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. Journal of controlled release. 2006; 116(1): 1-27. DOI: 10.1016/j.jconrel.2006.08.013
21. Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009; 86(3): 215-23. doi: 10.1016/ j.yexmp.2008.12.004.
22. Kavimandan NJ, Losi E, Peppas NA. Novel delivery system based on complexation hydrogels as delivery vehicles for insulin-transferrin conjugates. Biomaterials. 2006; 27(20): 3846-54. doi: 10.1016/j.biomaterials.2006.02.026.
23. Roger E, Lagarce F, Garcion E, Benoit JP. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery. Nanomedicine (Lond). 2010; 5(2): 287-306. doi: 10.2217/nnm.09.110.
24. Vandamme K, Melkebeek V, Cox E, Deforce D, Lenoir J, Adriaens E, Vervaet C, Remon JP. Influence of reaction medium during synthesis of Gantrez AN 119 nanoparticles for oral vaccination. Eur J Pharm Biopharm. 2010; 74(2): 202-8. doi: 10.1016/j.ejpb.2009.10.001.
25. Lochner N, Pittner F, Wirth M, Gabor F. Wheat germ agglutinin binds to the epidermal growth factor receptor of artificial Caco-2 membranes as detected by silver nanoparticle enhanced fluorescence. Pharm Res. 2003; 20(5): 833-9. doi: 10.1023/ a:1023406224028.
26. Chalasani KB, Russell-Jones GJ, Jain AK, Diwan PV, Jain SK. Effective oral delivery of insulin in animal models using vitamin B12-coated dextran nanoparticles. J Control Release. 2007; 122(2): 141-50. doi: 10.1016/j.jconrel.2007.05.019.
27. Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009; 3(1): 16-20. doi: 10.1021/nn900002m.
28. Dange YD, Honmane SM, Patil PA, Gaikwad UT, Jadge DR. Nanotechnology, Nanodevice Drug Delivery System: A Review. Asian J. Pharm. Tech. 2017; 7(2): 63-71. doi: 10.5958/2231-5713.2017.00010.1
29. Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao JX, Kissel T. Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm. 2000; 50(1): 147-60. doi: 10.1016/s0939-6411(00)00084-9.
30. Woitiski CB, Carvalho RA, Ribeiro AJ, Neufeld RJ, Veiga F. Strategies toward the improved oral delivery of insulin nanoparticles via gastrointestinal uptake and translocation. BioDrugs. 2008; 22(4): 223-37. doi: 10.2165/00063030-200822040-00002.
31. Chen MC, Mi FL, Liao ZX, Hsiao CW, Sonaje K, Chung MF, Hsu LW, Sung HW. Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Adv Drug Deliv Rev. 2013; 65(6): 865-79. doi: 10.1016/j.addr.2012.10.010.
32. Sonaje K, Chen YJ, Chen HL, Wey SP, Juang JH, Nguyen HN, Hsu CW, Lin KJ, Sung HW. Enteric-coated capsules filled with freeze-dried chitosan/poly(gamma-glutamic acid) nanoparticles for oral insulin delivery. Biomaterials. 2010; 31(12): 3384-94. doi: 10.1016/j.biomaterials.2010.01.042.
33. Su FY, Lin KJ, Sonaje K, Wey SP, Yen TC, Ho YC, Panda N, Chuang EY, Maiti B, Sung HW. Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery. Biomaterials. 2012; 33(9): 2801-11. doi: 10.1016/j.biomaterials.2011.12.038.
34. Radwan MA, Aboul-Enein HY. The effect of absorption enhancers on the initial degradation kinetics of insulin by alpha-chymotrypsin. Int J Pharm. 2001; 217(1-2): 111-20. doi: 10.1016/s0378-5173(01)00595-6.
35. Su FY, Lin KJ, Sonaje K, Wey SP, Yen TC, Ho YC, Panda N, Chuang EY, Maiti B, Sung HW. Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery. Biomaterials. 2012; 33(9): 2801-11. doi: 10.1016/j.biomaterials.2011.12.038.
36. Park K, Kwon IC, Park K. Oral protein delivery: Current status and future prospect. Reactive and Functional Polymers. 2011; 71(3): 280-287. doi: 10.1016/j.reactfunctpolym.2010.10.002
37. Jain A, Jain SK. L-Valine appended PLGA nanoparticles for oral insulin delivery. Acta Diabetol. 2015; 52(4): 663-76. doi: 10.1007/s00592-015-0714-3.
38. https://www.google.com/patents/WO2015032981A1?cl=en&utm_source=gb-gplus-sharePatent WO2015032981A1 - Erythropoietin conjugates having oral bioavailability
39. Sadeghi AM, Dorkoosh FA, Avadi MR, Weinhold M, Bayat A, Delie F, Gurny R, Larijani B, Rafiee-Tehrani M, Junginger HE. Permeation enhancer effect of chitosan and chitosan derivatives: comparison of formulations as soluble polymers and nanoparticulate systems on insulin absorption in Caco-2 cells. Eur J Pharm Biopharm. 2008; 70(1): 270-8. doi: 10.1016/ j.ejpb.2008.03.004.
40. Saffran M, Kumar GS, Savariar C, Burnham JC, Williams F, Neckers DC. A new approach to the oral administration of insulin and other peptide drugs. Science. 1986; 233(4768): 1081-4. doi: 10.1126/science.3526553.
41. Nagarajana E, Shanmugasundarama P, Ravichandirana V, Vijayalakshmia A, Senthilnathanb B, Masilamanib K. Development and evaluation of chitosan based polymeric nanoparticles of an antiulcer drug lansoprazole. Journal of Applied Pharmaceutical Science. 2015; 5(4): 020-5.
42. Yang X, Patel A, Vadlapudi AD, Mitra AK. Application of nanotechnology in ocular drug delivery. Bentham Science Publishers, Sharjah, United Arab Emirates; 2013 Jun 26.Mateja C, Barbara P, Porekar V, GabercS, Mateja N, Spela J, Radovan K, Simon C, Erythropoietin conjugates having oral bioavailability. https//www.google.com/patent/ 2015;032981? cl= en&utm_source=gb-gplus-sharePatent WO2015032981A1.
43. Li L, Jiang G, Yu W, Liu D, Chen H, Liu Y, Tong Z, Kong X, Yao J. Preparation of chitosan-based multifunctional nanocarriers overcoming multiple barriers for oral delivery of insulin. Materials science and engineering: C. 2017; 70: 278-86.
44. Jain A, Jain SK. L-Valine appended PLGA nanoparticles for oral insulin delivery. Acta diabetologica. 2015; 52(4): 663-76.
45. Irfan M. Saiyyad, D. S. Bhambere, Sanjay Kshirsagar. Formulation and Optimization of Silymarin Loaded PLGA Nanoparticle for liver targeting. Asian J. Pharm. Tech. 2017; 7(4): 209-220. doi: 10.5958/2231-5713.2017.00032.0
46. Pradnya M. Khandagale, Manish M. Rokade, Prof. Dipti G. Phadtare. Controlled Drug Delivery System-A Novel Approach. Asian J. Pharm. Tech. 2018; 8 (3): 161-164.
47. Venkatesan N, Yoshimitsu J, Ito Y, Shibata N, Takada K. Liquid filled nanoparticles as a drug delivery tool for protein therapeutics. Biomaterials. 2005; 26(34): 7154-63. doi: 10.1016/ j.biomaterials.2005.05.012.
48. Fayed BE, Tawfik AF, Yassin AE. Novel erythropoietin-loaded nanoparticles with prolonged in vivo response. J Microencapsul. 2012; 29(7): 650-6. doi: 10.3109/02652048.2012.680507.
49. Ray A. Liposome in Drug delivery system. Asian Journal of Research in Pharmaceutical Science. 2012; 2(2): 41-4.
50. Magdum SV, Patil SV, Patil SS. Magnetic Nanoparticles for Cancer Therapy. Asian Journal of Pharmacy and Technology. 2017; 7(4): 251-60. doi:10.5958/2231-5713.2017.00037.X
51. G. Sivasankari, S. Boobalan, D. Deepa. Dopamine sensor by Gold Nanoparticles Absorbed Redox behaving metal Complex. Asian J. Pharm. Tech. 2018; 8(2): 83-87. doi:10.5958/2231-5713.2018.00013.2