Author(s):
Bindesh Thakkar, Kartavya Pawar, Rahul Patil, Ashwini Bhoir, Payaam Vohra
Email(s):
payaamvohra@gmail.com
DOI:
10.52711/2231-5659.2024.00010
Address:
Bindesh Thakkar1, Kartavya Pawar1, Rahul Patil1, Ashwini Bhoir1, Payaam Vohra2*
1Konkan Gyanpeeth Rahul Dharkar College of Pharmacy and Research Instiute, Karjat - 410201, India.
2Department of Pharmacology, NIPER SAS Nagar, Punjab, India.
*Corresponding Author
Published In:
Volume - 14,
Issue - 1,
Year - 2024
ABSTRACT:
Liquisolid Technology aims to make drug entities more soluble that have low solubility and low permeability, through the cosolvency theory in a reasonably simple setup that doesn't require expensive technology. A non-volatile solvent is used to dissolve a medicine into molecular dispersion, which is then converted into a powder that has the appearance of being dry and is easily compressible. Extrudates are produced from the material by extrusion using an extruder. To create spherical particles known as Pellets, the extrudates are placed beneath the spheronizer. These pellets or granules can be filled in capsules or can be compacted into tablets according to their dose and can be utilized. Various evaluation parameters like Carr`s Index, Angle of Repose, FTIR, etc was studied. Overall, the study demonstrated that the liqui-pellet might improve a liquisolid formulation's poor flowability, which is thought to be a significant development in the concept's commercial viability. The current review aims to unfurl the utilization of liquisolid technology as a potential drug delivery system for BCS class 2 and 3 drugs.
Cite this article:
Bindesh Thakkar, Kartavya Pawar, Rahul Patil, Ashwini Bhoir, Payaam Vohra. Liquisolids: A Modernistic approach in Drug Delivery System. Asian Journal of Research in Pharmaceutical Sciences. Sci. 2024; 14(1):63-0. doi: 10.52711/2231-5659.2024.00010
Cite(Electronic):
Bindesh Thakkar, Kartavya Pawar, Rahul Patil, Ashwini Bhoir, Payaam Vohra. Liquisolids: A Modernistic approach in Drug Delivery System. Asian Journal of Research in Pharmaceutical Sciences. Sci. 2024; 14(1):63-0. doi: 10.52711/2231-5659.2024.00010 Available on: https://ajpsonline.com/AbstractView.aspx?PID=2024-14-1-10
REFERENCES:
1. Gorle AP, Chopade SS. Liquisolid Technology: Preparation, Characterization and Applications. Journal of Drug Delivery and Therapeutics. 2020; 10: 295–307. https://doi.org/10.22270/jddt.v10i3-s.4067.
2. Lam M, Ghafourian T, Nokhodchi A. Liqui-Pellet: the Emerging Next-Generation Oral Dosage Form Which Stems from Liquisolid Concept in Combination with Pelletization Technology. AAPS PharmSciTech 2019; 20. https://doi.org/10.1208/s12249-019-1441-9.
3. De Espíndola B, Beringhs AOR, Sonaglio D, Stulzer HK, Silva MAS, Ferraz HG, et al. Liquisolid pellets: A pharmaceutical technology strategy to improve the dissolution rate of ritonavir. Saudi Pharmaceutical Journal 2019; 27: 702–12. https://doi.org/10.1016/j.jsps.2019.04.005.
4. LAM MNA. Liqui pellets pharmaceutical methods and compositions. International Patent WO/2020/021254 2020.
5. Sharma S, arora v. Powder solution technology Review. Int J Curr Pharm Res 2021:32–5. https://doi.org/10.22159/ijcpr.2021v13i4.42739.
6. Kanugo A. Liquisolid-pellets technique: A recent technique for enhancing solubility and bioavailability of drugs. International Journal of Applied Pharmaceutics 2020; 12: 34–40. https://doi.org/10.22159/ijap.2020v12i6.39510.
7. Elkordy AA, Tan XN, Essa EA. Spironolactone release from liquisolid formulations prepared with CapryolTM 90, Solutol® HS-15 and Kollicoat® SR 30 D as non-volatile liquid vehicles. European Journal of Pharmaceutics and Biopharmaceutics 2013; 83: 203–23. https://doi.org/10.1016/j.ejpb.2012.08.004.
8. Chella N, Shastri N, Tadikonda RR. Use of the liquisolid compact technique for improvement of the dissolution rate of valsartan. Acta Pharm Sin B 2012;2:502–8. https://doi.org/10.1016/j.apsb.2012.07.005.
9. Pezzini BR, Beringhs AO, Ferraz HG, Silva MAS, Stulzer HK, Sonaglio D. Liquisolid technology applied to pellets: Evaluation of the feasibility and dissolution performance using felodipine as a model drug. Chemical Engineering Research and Design 2016; 110: 62–9. https://doi.org/10.1016/j.cherd.2016.01.037.
10. Tiong N, Elkordy AA. Effects of liquisolid formulations on dissolution of naproxen. European Journal of Pharmaceutics and Biopharmaceutics 2009; 73: 373–84. https://doi.org/10.1016/j.ejpb.2009.08.002.
11. Hentzschel CM, Alnaief M, Smirnova I, Sakmann A, Leopold CS. Enhancement of griseofulvin release from liquisolid compacts. European Journal of Pharmaceutics and Biopharmaceutics 2012; 80: 130–5. https://doi.org/10.1016/j.ejpb.2011.08.001.
12. Tayel SA, Soliman II, Louis D. Improvement of dissolution properties of Carbamazepine through application of the liquisolid tablet technique. European Journal of Pharmaceutics and Biopharmaceutics 2008; 69: 342–7. https://doi.org/10.1016/j.ejpb.2007.09.003.
13. Khaled KA, Asiri YA, El-Sayed YM. In vivo evaluation of hydrochlorothiazide liquisolid tablets in beagle dogs. Int J Pharm 2001; 222: 1–6. https://doi.org/10.1016/S0378-5173(01)00633-0.
14. Singh SK, Srinivasan KK, Gowthamarajan K, Prakash D, Gaikwad NB, Singare DS. Influence of formulation parameters on dissolution rate enhancement of glyburide using liquisolid technique. Drug Dev Ind Pharm 2012; 38: 961–70. https://doi.org/10.3109/03639045.2011.634810.
15. Spireas S, Sadu S, Grover R. AAAIn Vitro Release Evaluation of Hydrocortisone Liquisolid Tablets. J Pharm Sci 1998; 87: 867–72. https://doi.org/10.1021/js970346g.
16. Spireas S; BSM. (54) (76) (21) (22) (60) (51) (52) (58) Liquisolid Systems and Methods Of Preparing Same. 2002.
17. Spireas S. Enhancement of prednisolone dissolution properties using liquisolid compacts. Int J Pharm 1998; 166: 177–88. https://doi.org/10.1016/S0378-5173(98)00046-5.
18. Fahmy R, Kassem M. Enhancement of famotidine dissolution rate through liquisolid tablets formulation: In vitro and in vivo evaluation. European Journal of Pharmaceutics and Biopharmaceutics 2008; 69: 993–1003. https://doi.org/10.1016/j.ejpb.2008.02.017.
19. Vittal GV, Deveswaran R, Bharath S, Basavaraj B, Madhavan V. Formulation and characterization of ketoprofen liquisolid compacts by Box-Behnken design. Int J Pharm Investig 2012; 2: 150–6. https://doi.org/10.4103/2230-973X.104398.
20. Komala DR, Janga KY, Jukanti R, Bandari S, Vijayagopal M. Competence of raloxifene hydrochloride loaded liquisolid compacts for improved dissolution and intestinal permeation. J Drug Deliv Sci Technol.2015; 30: 232–41. https://doi.org/10.1016/j.jddst.2015.10.020.
21. Sanka K, Poienti S, Mohd AB, Diwan P V. Improved oral delivery of clonazepam through liquisolid powder compact formulations: In-vitro and ex-vivo characterization. Powder Technol. 2014; 256: 336–44. https://doi.org/10.1016/j.powtec.2014.02.026.
22. Bonthagarala B, Lakshmi Sai PD, K. VS, G. AK, Rao BN, Dasari V. Enhancement of dissolution rate of Clofibrate BCS Class –II drug by using liquisolid compact technology. International Journal of Biomedical and Advance Research. 2015; 6: 288. https://doi.org/10.7439/ijbar.v6i3.1891.
23. Pezzini BR, Beringhs AO, Ferraz HG, Silva MAS, Stulzer HK, Sonaglio D. Liquisolid technology applied to pellets: Evaluation of the feasibility and dissolution performance using felodipine as a model drug. Chemical Engineering Research and Design. 2016; 110: 62–9. https://doi.org/10.1016/j.cherd.2016.01.037.
24. Khan A, Iqbal Z, Shah Y, Ahmad L, Ismail, Ullah Z, et al. Enhancement of dissolution rate of class II drugs (Hydrochlorothiazide); a comparative study of the two novel approaches; solid dispersion and liqui-solid techniques. Saudi Pharmaceutical Journal. 2015; 23: 650–7. https://doi.org/10.1016/j.jsps.2015.01.025.
25. Javadzadeh Y, Musaalrezaei L, Nokhodchi A. Liquisolid technique as a new approach to sustain propranolol hydrochloride release from tablet matrices. Int J Pharm 2008;362:102–8. https://doi.org/10.1016/j.ijpharm.2008.06.022.
26. Elkordy AA, Essa EA, Dhuppad S, Jammigumpula P. Liquisolid technique to enhance and to sustain griseofulvin dissolution: Effect of choice of non-volatile liquid vehicles. Int J Pharm. 2012; 434: 122–32. https://doi.org/10.1016/j.ijpharm.2012.05.072.
27. Nokhodchi A, Aliakbar R, Desai S, Javadzadeh Y. Liquisolid compacts: The effect of cosolvent and HPMC on theophylline release. Colloids Surf B Biointerfaces. 2010; 79: 262–9. https://doi.org/10.1016/j.colsurfb.2010.04.008.
28. Adibkia K, Shokri J, Barzegar-Jalali M, Solduzian M, Javadzadeh Y. Effect of solvent type on retardation properties of diltiazem HCl form liquisolid tablets. Colloids Surf B Biointerfaces. 2014; 113: 10–4. https://doi.org/10.1016/j.colsurfb.2013.08.017.
29. Khanfar M, Sheikh Salem M, Kaddour F. Preparation of sustained-release dosage form of Venlafaxine HCl using liquisolid technique. Pharm Dev Technol. 2014; 19: 103–15. https://doi.org/10.3109/10837450.2012.757785.
30. Nokhodchi A, Hentzschel CM, Leopold CS. Drug release from liquisolid systems: speed it up, slow it down. Expert Opin Drug Deliv. 2011; 8: 191–205. https://doi.org/10.1517/17425247.2011.548801.
31. Gonjari ID, Karmarkar AB, Hosmani AH. Evaluation of In Vitro Dissolution Profile Comparison Methods of Sustained Release Tramadol Hydrochloride Liquisolid Compact Formulations With Marketed Sustained Release Tablets. vol. 2009; 4.
32. El-Hammadi M, Awad N. Investigating the Use of Liquisolid Compacts Technique to Minimize the Influence of pH Variations on Loratadine Release. AAPS PharmSciTech. 2012; 13: 53–8. https://doi.org/10.1208/s12249-011-9719-6.
33. Badawy MA, Kamel AO, Sammour OA. Use of biorelevant media for assessment of a poorly soluble weakly basic drug in the form of liquisolid compacts: in vitro and in vivo study. Drug Deliv 2016; 23: 808–17. https://doi.org/10.3109/10717544.2014.917442.
34. Tønnesen HH. Formulation and stability testing of photolabile drugs. Int J Pharm. 2001; 225: 1–14. https://doi.org/10.1016/S0378-5173(01)00746-3.
35. Khames A. Liquisolid technique: a promising alternative to conventional coating for improvement of drug photostability in solid dosage forms. Expert Opin Drug Deliv. 2013; 10: 1335–43. https://doi.org/10.1517/17425247.2013.798297.
36. Kanugo A. Liquisolid-pellets technique: A recent technique for enhancing solubility and bioavailability of drugs. International Journal of Applied Pharmaceutics. 2020; 12: 34–40. https://doi.org/10.22159/ijap.2020v12i6.39510.
37. Suliman AS, Anderson RJ, Elkordy AA. Norfloxacin as a model hydrophobic drug with unique release from liquisolid formulations prepared with PEG200 and Synperonic PE/L-61 non-volatile liquid vehicles. Powder Technol. 2014; 257: 156–67. https://doi.org/10.1016/j.powtec.2014.02.048.
38. Spireas S, Wang T, Grover R. Effect of Powder Substrate on the Dissolution Properties of Methyclothiazide Liquisolid Compacts. Drug Dev Ind Pharm. 1999; 25: 163–8. https://doi.org/10.1081/DDC-100102156.
39. Wang L, Feng R, Gao J, Xi Y, Huang G. Generic sustained release tablets of trimetazidine hydrochloride: Preparation and in vitro-in vivo correlation studies. Asian J Pharm Sci. 2016; 11: 417–26. https://doi.org/10.1016/j.ajps.2015.10.001.
40. Javadzadeh Y, Siahi MR, Asnaashari S, Nokhodchi A. An Investigation of Physicochemical Properties of Piroxicam Liquisolid Compacts. Pharm Dev Technol. 2007; 12: 337–43. https://doi.org/10.1080/10837450701247574.
41. Khanfar M, Sheikh Salem M, Kaddour F. Preparation of sustained-release dosage form of Venlafaxine HCl using liquisolid technique. Pharm Dev Technol. 2014; 19: 103–15. https://doi.org/10.3109/10837450.2012.757785.
42. Javadzadeh Y, Siahi M, Asnaashari S, Nokhodchi A. Liquisolid technique as a tool for enhancement of poorly water-soluble drugs and evaluation of their physicochemical properties. Acta Pharmaceutica 2007; 57: 99–109. https://doi.org/10.2478/v10007-007-0008-6.
43. Pavani E, Noman S, Syed IA. Liquisolid Technique Based Sustained Release Tablet of Trimetazidine Dihydrochloride. Drug Invention Today. 2013; 5: 302–10. https://doi.org/10.1016/j.dit.2013.08.006.
44. Wu C, Chen B, Wang, Quan, Peng, Pan, et al. In vitro and in vivo evaluation of ordered mesoporous silica as a novel adsorbent in liquisolid formulation. Int J Nanomedicine. 2012: 199. https://doi.org/10.2147/IJN.S26763.
45. Sayyad FJ, Tulsankar SL, Kolap UB. Design and development of liquisolid compact of candesartan cilexetil to enhance dissolution. J Pharm Res. 2013; 7: 381–8. https://doi.org/10.1016/j.jopr.2013.05.012.
46. Parikh DM. Handbook of Pharmaceutical Granulation Technology. Informa Healthcare USA; 2010.
47. Michie H, Podczeck F, Newton JM. The influence of plate design on the properties of pellets produced by extrusion and spheronization. Int J Pharm. 2012; 434: 175–82. https://doi.org/10.1016/j.ijpharm.2012.05.050.
48. Muley S, Nandgude T, Poddar S. Extrusion–spheronization a promising pelletization technique: In-depth review. Asian J Pharm Sci. 2016; 11: 684–99. https://doi.org/10.1016/j.ajps.2016.08.001.
49. Author C, Nokhodchi A, Javadzadeh Y, Reza Siahi-Shadbad M, Barzegar-Jalali M. The effect of type and concentration of vehicles on the dissolution rate of a poorly soluble drug (indomethacin) from liquisolid compacts. 2005; 8.
50. Vajir Sandip SVGNBakdeBV. Liquisolid compact: a new technique for enhancement of drug dissolution. International Journal of Pharmaceutical Research & Development. 2012; 4: 302–6.
51. Kulkarni AS, Aloorkar NH, Mane MS, Gaja JB. Liquisolid Systems: A Review. International Journal of Pharmaceutical Sciences and Nanotechnology. 2010; 3: 795–802. https://doi.org/10.37285/ijpsn.2010.3.1.1.
52. Spireas SS, Jarowski CI, Rohera BD. Powdered Solution Technology: Principles and Mechanism. Pharm Res. 1992; 9: 1351–8. https://doi.org/10.1023/A:1015877905988.
53. Karmarkar AB, Gonjari ID, Hosmani AH. Liquisolid technology for dissolution rate enhancement or sustained release. Expert Opin Drug Deliv. 2010; 7: 1227–34. https://doi.org/10.1517/17425247.2010.511173.
54. Karmarkar A, Gonjari I, Hosman A, Dhabal P, Bhis S. Liquisolid tablets: a novel approach for drug delivery. International Journal of Health Research. 2010; 2. https://doi.org/10.4314/ijhr.v2i1.55386.
55. Khanfar M, Sheikh Salem M, Hawari R. Formulation factors affecting the release of ezetimibe from different liquisolid compacts. Pharm Dev Technol. 2013; 18: 417–27. https://doi.org/10.3109/10837450.2012.680594.
56. B.A. Bhairav, J.K. Bachhav, R.B. Saudagar. Review on Solubility Enhancement Techniques. Asian J. Pharm. Res. 2016; 6(3): 147-152.
57. D.M. Shinkar, Aarif S. Khatik, R.B. Saudagar. Liquisolid Technology :A Review. Asian J. Res. Pharm. Sci. 2016; 6(3): 161-166.
58. Vrushali G. Raut, Bharatee P. Chaudhari, Vivekkumar K. Redasani. Influence of Newly Synthesized Superdisintegrant on Dissolution Rate Enhancement of Carbamazepine using Liquisolid Compact Technique. Asian Journal of Research in Pharmaceutical Sciences. 2022; 12(2): 107-4
59. Sapana Ahirrao, Bhagyashree D. Gangode, Sanjay Kshirsagar. Solubility Enhancement of Ritonavir by using Liquisolid Compact Technique. Asian J. Pharm. Tech. 2017; 7(4):189-201.
60. A.D. Deshmukh, S.R. Wasankar, R.M. Burghate, M.A. Ughade. Liquisolid Technique for Enhancing Dissolution Rate: A Review. Research J. Pharma. Dosage Forms and Tech. 2013; 5(1): 01-06.
61. Dinesh Pardhi, Umesh Shivhare, Pravin Suruse, Geetu Chabra. Liquisolid Technique for Solubility Enhancement of Poorly Water Soluble Drugs. Research J. Pharma. Dosage Forms and Tech. 2010; 2(5): 314-322.
62. Amol S. Deshmukh, Vinod G. Mahale, Vijay R. Mahajan. Liquisolid Compact Techniques: A Review. Res. J. Pharm. Dosage Form. and Tech. 2014; 6(3): 161-166.
63. Shinkar DM, Aher SB, Saudagar RB. Design and development of liquisolid compact of carvedilol. Research Journal of Pharmaceutical Dosage Forms and Technology. 2015; 7(4): 243-55.
64. Krishna AN, Deepthi Y, Aruna S, Murthy TE. Design Development of Liquisolid Compacts of Atorvastatin Calcium. Research Journal of Pharmaceutical Dosage Forms and Technology. 2015; 7(2): 93-7.
65. Patil IS, Patil OA, Rane NU, Nitalikar MM. A Review on Liquisolid Technique: A Novel Approach. Research Journal of Pharmaceutical Dosage Forms and Technology. 2018; 10(3): 188-92.