Author(s): Radhika G. Sojitra, Urvi J. Chotaliya

Email(s): rsojitrapharma@gmail.com

DOI: 10.52711/2231-5659.2021-11-2-13   

Address: Radhika G. Sojitra*, Urvi J. Chotaliya
1Pharmaceutical Quality Assurance Department, B. K. Mody Government Pharmacy College, Rajkot, Gujarat, India.
*Corresponding Author

Published In:   Volume - 11,      Issue - 2,     Year - 2021


ABSTRACT:
The WHO has declared the ongoing outbreak as a global public health emergency. Severe acute respiratory syndrome (SARS COV-II), the etiologic agent of COVID-19 has spread globally in a few months. It is a pandemic, surface to surface communicable disease. This review enlightens the preventive measures such as salt (sodium chloride) water as a selection of surface disinfectant. The application of saltwater is a sustainable and green concept and has several advantages including cost-effectiveness, ease of application, effective disinfection, on-the-spot production, safe for human beings and the environment. As compared to other chemical-based disinfectants and sanitizers, it is better to use on-hand techniques to clean vegetables and fruits, wooden surfaces, toys, and glasses with the most easily available, most economical, and non-toxic material of every house’s kitchen: A Common Salt. A simple saltwater solution containing approx 0.9-1.2% solution can be the cheapest, easiest, quickest, and safest way to clean different kinds of household surfaces to combat this pandemic situation.


Cite this article:
Radhika G. Sojitra, Urvi J. Chotaliya. Saltwater as a Disinfectant and Cleaning agent for Environmental Surfaces in the context of SARS-COV-II. Asian Journal of Research in Pharmaceutical Sciences. 2021; 11(2):165-4. doi: 10.52711/2231-5659.2021-11-2-13

Cite(Electronic):
Radhika G. Sojitra, Urvi J. Chotaliya. Saltwater as a Disinfectant and Cleaning agent for Environmental Surfaces in the context of SARS-COV-II. Asian Journal of Research in Pharmaceutical Sciences. 2021; 11(2):165-4. doi: 10.52711/2231-5659.2021-11-2-13   Available on: https://ajpsonline.com/AbstractView.aspx?PID=2021-11-2-13


REFERENCES:
1.    Hans R. Structure and Classification of Viruses. J. Medical Microbiology. 1996.
2.    Frank F and Frederick A, et al. structure and composition of viruses. 1987; pp: 3-19.
3.    Kiran TN and Madhu L. Novel Coronavirus. Res. J. Pharmacology and Pharmacodynamics. 2020; 12(2)
4.    Chan JF and to KK, et al. Interspecies transmission and emergence of novel viruses: lessons from bats and birds. 2013; 21: 544-55.
5.    Wang L and Wang Y, et al. International Journal of Antimicrobial Agents. 2020; 55.
6.    Zhu N and Zhang D, et al. The New England journal of medicine. 2020.
7.    Wu A and Peng Y, et al. Genome Composition and Divergence of the Novel Corona virus (2019-nCoV) Originating in China. 2020.
8.    Hoffmann M, et al. The novel corona virus 2019 (2019-nCoV) uses the SARS-corona virus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. 2020.
9.    Akshay G, Rutuja S. SARS-COV-II the Beta Genome Coronavirus: A Brief Overview, Pathogenesis, and Treatment. Asian J. Res. Pharm. Sci. 2020; 10(4): 299-310.
10.    Nikhat F, Thouheed A, Moid A. SARS-COV-IIleader-RNA-primed Transcription and RNA-Splicing prevention, control and Treatment. Asian J. Research Chem. 2020; 13(4): 291-298.
11.    Wrapp D and Wang N, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (New York), 2020.
12.    Shankhdhar PK and Mishra P. Turmeric plant immunobooster against covid-19. Res. J. Pharmacognosy and Phytochem. 2020; 12(3); 174-177.
13.    Barreto ML and Teixeira MG. Infectious diseases epidemiology. 2006.
14.    Naresh BV. A review of the 2019 novel coronavirus pandemic. Asian j. Pharmaceutical Res. 2020; 10(3).
15.    Hadi E and Mahrokh J. The role of environmental factors to transmission of SARS-COV-II (COVID-19) J. Amb expresses. 2020.
16.    Manisha R and Pradnya K. Coronavirus Disease: A Review of a New Threat to Public Health. Asian J. Pharm. Res. 2020; 10(3): 241-244.
17.    Rani EJ. Alcohol and Covid-19. International journal of advances in nursing management. 2020; 8(4).
18.    U S Chemical, Watertown WI 53094, 2016
19.    Jain RS and Jain TJ. Impact of Covid-19 on Changing Habits and Health Issues of the Public. Asian Journal of Management. 2020; 11 (4): 524-528.
20.    Sinha A. petrochemicals, oils and soaps. Ic404A/CSM404A
21.    Pradhan D and Ghosh G. A review for current interventions of covid-19 prevention. Archives of medical research. 2020; 363-374.
22.    United States Environmental Protection Agency, List N: Disinfectants for use against SARS COV-2, Available from: URL: https://www.epa.gov/pesticide-registration/list-n-disinfectants-use-against-SARS-COV-II. Accessed April 18; 2020.
23.    Alicia Culver, Chris Geiger, Deanna Simon. Safer products and practices for disinfecting and sanitizing surfaces. pp 32-33.
24.    Sodium chloride. Available from: URL: https://en.wikipedia.org/ wiki/Sodiumchloride
25.    Bonnie C. Available from: URL: https://education.seattlepi.com/ examples-osmosis-3608.html
26.    Julia H. 2018. Available from: URL: https://www.healthline.com/ health/sodium-chloride
27.    Sedbergh. Available from: URL: https://www.sedbergh-soap.co.uk/sensitive-skin/
28.    Anne Marie H. November 01, 2019. Available from: URL: https:// www.thoughtco.com/how-to-make-saline-solution-608142
29.    Rahman S and Khan I, et al. Comprehensive Reviews in Food Science and Food Safety. 2016; 471-490.
30.    Al-Haq MI and Sugiyama J. Applications of electrolyzed water in agriculture and food industries. 2005.
31.    Hricova D and Stephan R, et al. Electrolyzed water and its application in the food industry. 2008.
32.    Deza M, Araujo M. Efficacy of neutral electrolyzed water to inactivate Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus on plastic and wooden kitchen cutting boards. 2007.
33.    Forghani F, Park J-H. Effect of water hardness on the production and microbicidal efficacy of slightly acidic electrolyzed water. 2015; pp 28–34.
34.    Hannah. Bond cleaning Sydney. Feb 06, 2020. Available from: URL: https://www.bondcleaning.sydney/6-ways-to-make-natural-disinfectants-for-clean-and-safe-home/
35.    Erik Kramer. April 18, 2020. Available from: URL: https:// www.wikihow.com/Make-a-Natural-Disinfectant
36.    Rahman S, Khan I, et al. Comprehensive Reviews in Food Science and Food Safety. 2016; pp 471-490.
37.    Ritika G. The Management of Coronavius Pandemic 2019-2020. Asian J. Pharm. Res. 2020; 10(4): 327-330.
38.    Soon k. Feb 3. 2020. Available from: URL: https://lemon-film.com/why-salt-and-water-best-sanitiser
39.    Mayur SJ, Shashikant DB. Corona viruses are a family of viruses that range from the common cold to MERS corona virus: A Review. Asian J. Res. Pharm. Sci. 2020; 10(3): 204-210.
40.    Block M, Rowan B. journal of oral and maxillofacial surgery. vol. 78; 2020: pp 1461-1466.
41.    Biology Stack Exchange, https://biology.stackexchange.com/ questions/62671/how-does-hypochlorous-acid-inactivate-viruses
42.    Winter J, Ilbert M, et al. Bleach activates a redox regulated chaperone by oxidative protein unfolding. Cell 135: 691; 2008.
43.    Kampf G, Todt D, et al. Persistence of corona viruses on inanimate surfaces and their inactivation with biocidal agents. 2020.
44.    Park GW, Boston DM, et al. Evaluation of liquid- and fogbased application of Sterilox hypochlorous acid solution for surface inactivation of human norovirus. 2007.
45.    Fitzgerald GJ. American journal of public health. 2008.
46.    Winder C. The toxicology of chlorine, Environmental research. 2001.
47.    Withers R, Lees F. The assessment of major hazards: The lethal toxicity of chlorine: Part 2, Model of toxicity to man. Journal of hazardous materials. 1985; 283-302.
48.    Jeong J, Kim C, Yoon J. The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes. 2009; 895-901.
49.    Fukuzaki S. Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Bio control Sci 11. 2006.
50.    Weber D, Rutala W, Healthcare Infection Control Practices Advisory Committee, Available from: URL: https://www.cdc.gov/ infectioncontrol/guidelines/disinfection/index.html Update: May 2019.
51.    Becker CE. Methanol poisoning. Journal of Emergency Medicine. 1983.
52.    Keil FJ. Methanol-to-hydrocarbons: process technology, Microporous and Mesoporous Materials. 1999.
53.    Waugh K. Methanol synthesis. Catalysis Letters. 1992; 15.
54.    Joyce R, McKusick BC. Handling and disposal of chemicals in laboratories. Handbook of Chemistry and Physics. 2000.
55.    World Health Organization Laboratory Biosafety Manual, 3rd Edn; 2004
56.    McDonnell G, Russell A. Erratum: Antiseptics and disinfectants: Activity, action, and resistance. 1999; 12: 147.
57.    Watt BE, Proudfoot AT, Vale JA. Hydrogen peroxide poisoning, Toxicological reviews. 2004.
58.    Halliwell B, Clement MV, Long LH. Hydrogen peroxide in the human body. 2000.
59.    Chambon M, Archimbaud C, et al. Appl. Environmental Microbiol. 2004; 70: 1717.

Recomonded Articles:

Author(s): D.M. Shinkar, Bhushan S Bhamare, R.B. Saudagar

DOI: 10.5958/2231-5659.2016.00011.4         Access: Open Access Read More

Asian Journal of Research in Pharmaceutical Sciences (AJPSci) is an international, peer-reviewed journal, devoted to pharmaceutical sciences....... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2231-5659 


Recent Articles




Tags