Author(s): Sushmita V. Patil, Amit A. Shimpi, Azam Z. Shaikh

Email(s): sushmitavpatil1705@gmail.com

DOI: 10.5958/2231-5659.2020.00041.7   

Address: Sushmita V. Patil*, Amit A. Shimpi, Azam Z. Shaikh
Department of Pharmaceutical Chemistry, Ahinsa Institute of Pharmacy Dhule Road Dondaicha- 425408.
*Corresponding Author

Published In:   Volume - 10,      Issue - 3,     Year - 2020


ABSTRACT:
The peroxisome proliferator-activated receptors (PPARs) feel right to the nuclear hormone receptor marvelous ancestors. To date, three singular PPAR isotopes, namely PPAR-a, -d, and -?, have been branded in vertebrates and have different patterns of tissue allocation. Like all nuclear receptors, the human PPAR-? (hPPAR-?) is characterized by a modular arrangement composed of an N-terminal A/B domain, a DNA-binding domain among two zinc fingers (C domain), a D domain, and a C-terminal ligand-binding domain (E/F domain). Human PPAR-? exists in two protein isoforms, hPPAR-?1 and -?2, with different lengths of the N-terminal. Pancreatic cancer is one of the most deadly forms of human cancer. Several molecular abnormalities habitually nearby in pancreatic cancer have been distinct and comprise mutations in K-ras, p53, p16 and DPC4 genes. Nuclear receptor Peroxisome Proliferator-Activated Receptor gamma (PPAR?) has a function in numerous carcinomas and has been originate to be over articulated in pancreatic cancer. It plays normally a swelling suppressor role antagonizing proteins promoting carcinogenesis such as NF-?B and TGFß. This review of the existing journalism places of interest is Structure and physiological functions of the human PPRA?, examine PPAR? in pancreatic cancerand type 2 diabetes, and their association to additional pathways imperative in pancreatic carcinogenesis.


Cite this article:
Sushmita V. Patil, Amit A. Shimpi, Azam Z. Shaikh. Structure and physiology of PPAR- γ receptor, as well as its effect on Pancreatic cancer Effect of TZDs on Adipokines. Asian J. Res. Pharm. Sci. 2020; 10(3):224-232. doi: 10.5958/2231-5659.2020.00041.7


REFERENCES:
1. H. Manuel, “Pancreatic cancer,” The New England Journal of Medicine, vol. 362, no. 17, pp. 1605–1617, 2010.
2. H. A. Burris III, M. J. Moore, J. Andersen et al., “Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial,” Journal of Clinical Oncology, vol. 15, no. 6, pp. 2403–2413, 1997.
3. T. Conroy, F. Desseigne, M. Ychou et al., “FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer,”
4. Dreyer C., Krey G., Keller H., Givel F., Helftenbein G. and Wahli W. (1992): Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors. Cell, 68, 879–887.
5. Isseman I. and Green S. (1990): Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature, 347, 645–650.
6. Barger P. M. and Kelly D. P. (2000): PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc. Med., 10, 238–245.
7. G. Kristiansen, J. Jacob, A. C. Buckendahl et al., “Peroxisome proliferator-activated receptor γ is highly expressed in pancreatic cancer and is associated with shorter overall survival times,” Clinical Cancer Research, vol. 12, no. 21, pp. 6444– 6451, 2006.
8. Auboeuf D., Rieusset J., Fajas L., Vallier P., Frering V., Riou J. P., Staels B., Auwerx J., Laville M. and Vidal H. (1997): Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans: no alteration in adipose tissue of obese and NIDDM patients. Diabetes, 46, 1319–1327.
9. Mukherjee R., Jow L., Croston G. E., Paternity J. R. (1997): Identification, characterization, and tissue distribution of human peroxisome proliferator-activated receptor (PPAR) isoforms PPAR-gamma2 versus PPAR-gamma1 and activation with retinoid X receptor agonists and antagonists. J. Biol. Chem., 272, 8071–8076.
10. Dressel U., Allen T. L., Pippal J. B., Rohde P. R., Lau P. and Muscat G. E. (2003): The peroxisome proliferator--activated receptor beta/delta agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. Mol. Endocrinol., 17, 2477–2493.
11. Leibowitz M. D., Fiévet C., Hennuyer N., Peinado--Onsurbe J., Duez H., Bergera J., Cullinan C. A., Sparrow C. P., Baffic J., Berger G. D., Santini C., Marquis R. W., Tolman R. L., Smith R. G., Moller D. E. and Auwerx J. (2000): Activation of PPARdelta alters lipid metabolism in db/db mice. FEBS Lett., 473, 333 336.
12. Tanaka T., Yamamoto J., Iwasaki S., Asaba H., Hamura H., Ikeda Y., Watanabe M., Magoori K., Ioka R. X., Tachibana K., Watanabe Y., Uchiyama Y., Sumi K., Iguchi H., Ito S., Doi T., Hamakubo T., Naito M., Auwerx J., Yanagisawa M., Kodama T. and Sakai J. (2003): Activation of peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc. Natl. Acad. Sci. USA,100, 15924–15929.
13. Wang Y. X., Zhang C. L., Yu R. T., Cho H. K., Nelson M. C., Bayuga-Ocampo C. R., Ham J., Kang H. and Evans R. M. (2004): Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol., 2, e294.
14. Kahn B. B. and Flier J. S. (2000): Obesity and insulin resistance. J. Clin. Invest., 106, 473–481.
15. Lemberger T., Desvergne B. and Wahli W. (1996): Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology. Annu. Rev. Cell Dev. Biol., 12, 335–363.
16. Spiegelman B. M. (1998): PPAR-gamma: Adipogenic regulator and thiazolidinedione receptor. Diabetes, 47, 507–514.\
17. IJpenberg A., Jeannin E., Wahli W. and Desvergne B. (1997): Polarity and specific sequence requirements of peroxisome proliferator-activated receptor (PPAR)/retinoid X receptor heterodimer binding to DNA. J. Biol. Chem., 272, 20108–20117.
18. Kliewer S. A., Umesono K., Mangelsdorf D. J. and Evans R. M. (1992): Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature, 355, 446–449.
19. Kliewer S. A., Umesono K., Noonan D. J., Heyman R. A. and Evans R. M. (1992): Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature, 358, 771–774.
20. Forman B. M., Chen J. and Evans R. M. (1997): Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc. Natl. Acad. Sci. USA, 94, 4312–4317.
21. Forman B. M., Tontonoz P., Chen J., Brun R. P., Spiegelman B. M. and Evans R. M. (1995): 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR-gamma. Cell, 83, 803–812.
22. Kliewer S. A., Sundseth S. S., Jones S. A., Brown P. J., Wisely G. B., Koble C. S., Devchand P., Wahli W., Willson T. M., Lenhard J. M. and Lehmann J. M. (1997): Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc. Natl. Acad. Sci. USA, 94, 4318–4323.
23. Henke B. R., Blanchard S. G., Brackeen M. F., Brown K. K., Cobb J. E., Collins J. L., Harrington W. W. Jr., Hashim M. A., Hull-Ryde E. A., Kaldor I., Kliewer S. A., Lake D. H., Leesnitzer L. M., Lehmann J. M., Lenhard J. M., Orband-Miller L. A., Miller J. F., Mook R. A. Jr., Noble S. A., Oliver W. Jr., Parks D. J., Plunket K. D., Szewczyk J. R. and Willson T. M. (1998): N-(2-Benzoylphenyl)-L-tyrosine PPARgamma agonists. 1. Discovery of a novel series of potent antihyperglycemic and antihyperlipidemic agents. J. Med. Chem., 41, 5020–5036.
24. Lehmann J. M., Moore L. B., Smith-Oliver T. A., Wilkison W. O., Willson T. M. and Kliewer S. A. (1995): An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR--gamma). J. Biol. Chem., 270, 12953–12956.
25. Kliewer S. A., Lenhard J. M., Willson T. M., Patel I., Morris D. C. and Lehmann J. M. (1995): A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell, 83, 813–819.
26. Nagy L., Tontonoz P., Alvarez J. G., Chen H. and Evans R. M. (1998): Oxidized LDL regulates macrophage gene expression through ligand activation of PPAR-gamma. Cell, 93, 229–240.
27. Lehmann J. M., Moore L. B., Smith-Oliver T. A., Wilkison W. O., Willson T. M. and Kliewer S. A. (1995): An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR--gamma). J. Biol. Chem., 270, 12953–12956.
28. Rangwala S. M. and Lazar M. A. (2004): Peroxisome proliferator- activated receptor gamma in diabetes and metabolism. Trends Pharmacol. Sci., 25, 331–336.
29. H. Walczak, K. Iwai, and I. Dikic, “Generation and physiological roles of linear ubiquitin chains,” BMC Biology, vol. 10, article 23, 6 pages, 2012.
30. A. A. Chanan-Khan, I. Borrello, K. P. Lee, and D. E. Reece, “Development of target-specific treatments in multiple myeloma,” British Journal of Haematology, vol. 151, no. 1, pp. 3–15, 2010.
31. Owen G. I. and Zelent A. (2000): Origins and evolutionary diversification of nuclear receptor superfamily. CMLS Cell. Mol. Life Sci., 57, 809–827.
32. Werman A., Hollenberg A., Solanes G., Bjørbaek C., Vidal-Puig A. J. and Flier J. S. (1997): Ligand-independent activation domain in the N terminus of peroxisome proliferator- activated receptor gamma (PPARγ). J. Biol. Chem., 272, 20230–20235.
33. Auwerx J. (1999): PPAR-gamma, the ultimate thrifty gene. Diabetologia, 42, 1033–1049.
34. Shao D., Rangwala S. M., Bailey S. T., Krakow S. L., Reginato M. J. and Lazar M. A. (1998): Interdomain communication regulating ligand binding by PPAR-gamma. Nature, 396, 377–380.
35. Hu E., Kim J. B., Sarraf P. and Spiegelman B. M. (1996): Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma. Science, 274, 2100–2103.
36. Nolte R. T., Wisely G. B., Westin S., Cobb J. E., Lambert M. H., Kurokawa R., Rosenfeld M. G., Willson T. M., Glass C. K. and Milburn M. V. (1998): Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature, 395, 137–143.
37. Berger J. and Moller D. E. (2002): The mechanisms of action of PPARs. Annu. Rev. Med., 53, 409–435.
38. Uppenberg J., Svensson C., Jaki M., Bertilsson G., Jendeberg L. and Berkenstam A. (1998): Crystal structure of the ligand binding domain of the human nuclear receptor PPARgamma. J. Biol. Chem., 273, 31108–31112.
39. Lehmann J. M., Moore L. B., Smith-Oliver T. A., Wilkison W. O., Willson T. M. and Kliewer S. A. (1995): An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR--gamma). J. Biol. Chem., 270, 12953–12956.
40. Lu I. L., Huang C. F., Peng Y. H., Lin Y. T., Hsieh H. P., Chen C. T., Lien T. W., Lee H. J., Mahindroo N., Prakash E., Yueh A., Chen H. Y., Goparaju C. M., Chen X., Liao C. C., Chao Y. S., Hsu J. T. and Wu S. Y. (2006): Structure--based drug design of a novel family of PPARγ partial agonist: virtual screening, X-ray crystallography, and in vitro/in vivo biological activities. J. Med. Chem., 49, 2703–2712.
41. Xu H. E., Lambert M. H., Montana V. G., Plunket K. D., Moore L. B., Collins J. L., Oplinger J. A., Kliewer S. A., Gampe R. T. Jr, McKee D. D., Moore J. T. and Willson T. M. (2001): Structural determinant of ligand binding selectivity between the peroxisome proliferator-activated receptors. Proc. Natl. Acad. Sci. USA, 98, 13919–13924.
42. Forman B. M., Chen J. and Evans R. M. (1997): Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc. Natl. Acad. Sci. USA, 94, 4312–4317.
43. Kliewer S. A., Sundseth S. S., Jones S. A., Brown P. J., Wisely G. B., Koble C. S., Devchand P., Wahli W., Willson T. M., Lenhard J. M. and Lehmann J. M. (1997): Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc. Natl. Acad. Sci. USA, 94, 4318–4323.
44. Forman B. M., Tontonoz P., Chen J., Brun R. P., Spiegelman B. M. and Evans R. M. (1995): 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR-gamma. Cell, 83, 803–812.
45. Kliewer S. A., Lenhard J. M., Willson T. M., Patel I., Morris D. C. and Lehmann J. M. (1995): A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell, 83, 813–819.
46. Nagy L., Tontonoz P., Alvarez J. G., Chen H. and Evans R. M. (1998): Oxidized LDL regulates macrophage gene expression through ligand activation of PPAR-gamma. Cell, 93, 229–240.
47. Brzozowski A. M., Pike A. C., Dauter Z., Hubbard R. E., Bonn T., Engstrom O., Ohman L., Greene G. L., Gustafsson J. A. and Carlquist M. (1997): Molecular basis of agonism and antagonism in the oestrogen receptor. Nature, 389, 753–758.
48. Renaud J. P., Rochel N., Ruff M., Vivat V., Chambon P., Gronemeyer H. and Moras D. (1995): Crystal structure of the RAR-gamma ligand-binding domain bound to all-trans retinoic acid. Nature, 378, 681–689.
49. Tzameli I., Fang H., Ollero M., Shi H., Hamm J. K., Kievit P., Hollenberg A.N. and Flier J. S. (2004): Regulated production of a peroxisome proliferator-activated receptor--gamma ligand during an early phase of adipocyte differentiation in 3T3-L1 adipocytes. J. Biol. Chem., 279, 36093–36102.
50. Lehmann J. M., Lenhard J. M., Oliver B. B., Ringold G. M. and Kliewer S. A. (1997): Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non steroidal anti-inflammatory drugs. J. Biol. Chem., 272, 3406–3410.
51. Tontonoz P., Hu E. and Speiegelman B. M. (1995): Regulation of adipocyte gene expression and differentiation by peroxisome proliferator activated receptor--gamma. Curr. Opin. Genet. Dev., 5, 571–576
52. Kletzien R. F., Clarke S. D. and Ulrich R. G. (1992): Enhancement of adipocyte differentiation by an insulin--sensitizing agent. Mol. Pharmacol., 41, 393–398.
53. Willson T. M., Cobb J. E., Cowan D. J., Wiethe R. W., Correa I. D., Prakash S. R., Beck K. D., Moore L. B.,Kliewer S. A. and Lehmann J. M. (1996): The structure activity relationship between peroxisome proliferator--activated receptor-gamma agonism, and anti-hyperglycaemic activity of thiazolidinediones. J. Med. Chem., 39, 665–668.
54. Reifel-Miller A., Otto K., Hawkins E., Barr R., Bensch W. R., Bull C., Dana S., Klausing K., Martin J. A., Rafaeloff--Phail R., Rafizadeh-Montrose C., Rhodes G., Robey R., Rojo I., Rungta D., Snyder D., Wilbur K., Zhang T., ZinkR., Warshawsky A. and Brozinick J. T. (2005): A peroxisome proliferator-activated receptor alpha/gamma dual agonist with a unique in vitro profile and potent glucose and lipid effects in rodent models of type 2 diabetes and dyslipidemia. Mol. Endocrinol., 19, 1593–1605.
55. M. Toyota, Y. Miyazaki, S. Kitamura et al., “Peroxisome proliferator-activated receptor γ reduces the growth rate of ancreatic cancer cells through the reduction of cyclin D1,” Life Sciences, vol. 70, no. 13, pp. 1565–1575, 2002.
56. S. Kawa, T. Nikaido, H. Unno, N. Usuda, K. Nakayama, and K. Kiyosawa, “Growth inhibition and differentiation of pancreatic cancer cell lines by PPARγ ligand troglitazone,” Pancreas, vol. 24, no. 1, pp. 1–7, 2002.
57. K. Hashimoto, B. J. Farrow, and B. M. Evers, “Activation and role of MAP Kinases in 15d-PGJ2-induced apoptosis in the human pancreatic cancer cell line MIA PaCa-2,” Pancreas, vol. 28, no. 2, pp. 153–159, 2004.
58. W. Motomura, M. Nagamine, S. Tanno et al., “Inhibition of cell invasion and morphological change by troglitazone in human pancreatic cancer cells,” Journal of Gastroenterology, vol. 39, no. 5, pp. 461–468, 2004.
59. H. Sawai, J. Liu, H. A. Reber, O. J. Hines, and G. Eibl, “Activation of peroxisome proliferator-activated receptor-γ decreases pancreatic cancer cell invasion throughmodulation of the plasminogen activator system,” Molecular Cancer Research, vol. 4, no. 3, pp. 159–167, 2006.
60. A. Galli, E. Ceni, D. W. Crabb et al., “Antidiabetic thiazolidinediones inhibit invasiveness of pancreatic cancer cells via PPARγ independent mechanisms,” Gut, vol. 53, no. 11, pp. 1688–1697, 2004.
61. E. Ceni, T. Mello, M. Tarocchi et al., “Antidiabetic thiazolidinediones induce ductal differentiation but not apoptosis in pancreatic cancer cells,” World Journal of Gastroenterology, vol. 11, no. 8, pp. 1122–1130, 2005.
62. M. Tsujie, S. Nakamori, J. Okami et al., “Thiazolidinediones inhibit growth of gastrointestinal, biliary, and pancreatic adenocarcinoma cells through activation of the peroxisome proliferator-activated receptor γ/retinoid X receptor α pathway,” Experimental Cell Research, vol. 289, no. 1, pp. 143–151, 2003.
63. Y. Takeuchi, M. Takahashi, K. Sakano et al., “Suppression of N-nitrosobis(2-oxopropyl) amine-induced pancreatic carcinogenesis in hamsters by pioglitazone, a ligand of peroxisome proliferator-activated receptor γ,” Carcinogenesis, vol. 28, no. 8, pp. 1692–1696, 2007.
64. Y.W. Dong, X. P. Wang, and K. Wu, “Suppression of pancreatic carcinoma growth by activating peroxisome proliferatoractivated receptor γ involves angiogenesis inhibition,” World Journal of Gastroenterology, vol. 15, no. 4, pp. 441–448, 2009.
65. A. Nakajima, A. Tomimoto, K. Fujita et al., “Inhibition of peroxisome proliferator-activated receptor γ activity suppresses pancreatic cancer cell motility,” Cancer Science, vol. 99, no. 10, pp. 1892–1900, 2008.
66. Andrzej Zieleniak, Marzena Wojcik, and Lucyna A. Wozniok; 2008, Structure and Physiological Functions of The Human Peroxisome Proliferator – Activated receptor- γ; Arch. Immunol. Ther. Exp. 2008, 56,331-345.
67. Athina Stravodimou, Gianluigi Mazzoccoli, and Ioannis A. Voutsadalas; 2012, Review Article: Peroxisome Proliferator – Activated Receptor Gamma and Regulations by the Ubiquitin – Proteasom System in Pancreatic Cancer; doi: 10.1155/2012/ 367450.
68. Uysal K. T., Wiesbrock S. M., Marino M. W. and Hotamisligil G. S. (1997): Protection from obesity--induced insulin resistance in mice lacking TNF-alpha function. Nature, 389, 610–614.
69. Ventre J., Doebber T., Wu M., MacNaul K., Stevens K., Pasparakis M., Kollias G. and Moller D. E. (1997): Targeted disruption of the tumor necrosis factor-alpha gene: metabolic consequences in obese and nonobese mice. Diabetes, 46, 1526–1531.
70. Miles P. D., Romeo O. M., Higo K., Cohen A., Rafaat K. and Olefsky J. M. (1997): TNF-alpha-induced insulin resistance in vivo and its prevention by troglitazone. Diabetes, 46, 1678–1683.
71. Shibasaki M., Takahashi K., Itou T., Bujo H. and Saito Y. (2003): A PPAR agonist improves TNF-alpha-induced insulin resistance of adipose tissue in mice. Biochem. Biophys. Res. Commun., 309, 419–424.
72. De Vos P., Lefebvre A. M., Miller S. G., Guerre-Millo M., Wong K., Saladin R., Hamann L. G., Staels B., Briggs M. R. and Auwerx J. (1996): Thiazolidinediones repress ob gene expression in rodents via activation of peroxisome proliferator-activated receptor gamma. J. Clin. Invest., 98, 1004–1009.
73. Kallen C. B. and Lazar M. A. (1996): Antidiabetic thiazolidinediones inhibit leptin (ob) gene expression in 3T3-L1 adipocytes. Proc. Natl. Acad. Sci. USA, 93, 5793–5796.
74. Müller G., Ertl J., Gerl M. and Preibisch G. (1997): Leptin impairs metabolic actions of insulin in isolated rat adipocytes. J. Biol. Chem., 272, 10585–10593.
75. Shimomura I., Hammer R. E., Ikemoto S., Brown M. S. and Goldstein J. L. (1999): Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature, 401, 73–76.
76. Yaspelkis B. B., Ansari L., Ramey E. L., Holland G. J. and Loy S. F. (1999): Chronic leptin administration increases insulin-stimulated skeletal muscle glucose uptake and transport. Metabolism, 48, 671–676.
77. Moon B., Kwan J. J., Duddy N., Sweeney G. and Begum N. (2003): Resistin inhibits glucose uptake in L6 cells independently of changes in insulin signaling and GLUT4 translocation. Am. J. Physiol. Endocrinol. Metab., 285, E106–115.
78. Steppan C. M., Bailey S. T., Bhat S., Brown E. J., Banerjee R. R., Wright C. M., Patel H. R., Ahima R. S. and Lazar M. A. (2001): The hormone resistin links obesity to diabetes. Nature, 409, 307–312.
79. Steppan C. M. and Lazar M. A. (2002): Resistin and obesity- associated insulin resistance. Trends Endocrinol. Metab., 13, 18–23.
80. Le Lay S., Boucher J., Rey A., Castan-Laurell I., Krief S., Ferré P., Valet P. and Dugail I. (2001): Decreased resistin expression in mice with different sensitivities to a high-fat diet. Biochem. Biophys. Res. Commun., 289, 564–567.
81. Milan G., Granzotto M., Scarda A., Calcagno A., Pagano C., Federspil G. and Vettor R. (2002): Resistin and adiponectin expression in visceral fat of obese rats: effect of weight loss. Obes. Res., 10, 1095–1103.
82. Stephens J. M. and Pekala P. H. (1992): Transcriptional repression of the C/EBP-alpha and GLUT4 genes in 3T3--L1 adipocytes by tumor necrosis factor-alpha. Regulation is coordinate and independent of protein synthesis. J. Biol. Chem., 267, 13580–13584.
83. Shojima N., Sakoda H., Ogihara T., Fujishiro M., Katagiri H., Anai M., Onishi Y., Ono H., Inukai K., Abe M., Fukushima Y., Kikuchi M., Oka Y. and Asano T. (2002): Humoral regulation of resistin expression in 3T3-L1 and mouse adipose cells. Diabetes, 51, 1737–1744.
84. Hartman H. B., Hu X., Tyler K. X., Dalal C. K. and Lazar M. A. (2002): Mechanisms regulating adipocyte expression of resistin. J. Biol. Chem., 277, 19754–19761.
85. Fukui Y. and Motojima K. (2002): Expression of resistin in the adipose tissue is modulated by various factors including peroxisome proliferator-activated receptor alpha. Diabetes Obes. Metab., 4, 342–345.
86. Way J. M., Görgün C. Z., Tong Q., Uysal K. T., Brown K. K., Harrington W. W., Oliver W. R. Jr., Willson T. M., Kliewer S. A. and Hotamisligil G. S. (2001): Adipose tissue resistin expression is severely suppressed in obesity and stimulated by peroxisome proliferator-activated receptor gamma agonists. J. Biol. Chem., 276, 25651– 25653.
87. Fasshauer M., Klein J., Neumann S., Eszlinger M. and Paschke R. (2001): Tumor necrosis factor alpha is a negative regulator of resistin gene expression and secretion in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun., 288, 1027–1031.
88. Fehmann H. C. and Heyn J. (2002): Plasma resistin levels in patients with type 1 and type 2 diabetes mellitus and in healthy controls. Horm. Metab. Res., 34, 671–673.
89. Lee J. H., Chan J. L., Yiannakouris N., Kontogianni M., Estrada E., Seip R., Orlova C. and Mantzoros C. S. (2003): Circulating resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or leptin administration: cross-sectional and interventional studies in normal, insulin-resistant, and diabetic subjects. J. Clin. Endocrinol. Metab., 88, 4848–4856.
90. Jackson M. B., Osei S. Y. and Ahima R. S. (2005): The endocrine role of adipose tissue: focus on adiponectin and resistin. Curr. Opin. Endocrinol. Diab., 12, 163.
91. Hu E., Liang P. and Spiegelman B. M. (1996): AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem., 271, 10697–10703.
92. Arita Y., Kihara S., Ouchi N., Takahashi M., Maeda K., Miyagawa J., Hotta K., Shimomura I., Nakamura T., Miyaoka K., Kuriyama H., Nishida M., Yamashita S., Okubo K., Matsubara K., Muraguchi M., Ohmoto Y., Funahashi T. and Matsuzawa Y. (1999): Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun., 257, 79–83.
93. Weyer C., Funahashi T., Tanaka S., Hotta K., Matsuzawa Y., Pratley R. E. and Tataranni P. A. (2001): Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab., 86, 1930–1935.
94. Combs T. P., Wagner J.A., Berger J., Doebber T., Wang W. J., Zhang B. B., Tanen M., Berg A. H., O’Rahilly S., Savage D. B., Chatterjee K., Weiss S., Larson P. J., Gottesdiener K. M., Gertz B. J., Charron M. J., Scherer P. E. and Moller D. E. (2002): Induction of adipocyte complement- related protein of 30 kilodaltons by PPAR-γ agonists: a potential mechanism of insulin sensitization. Endocrinology, 143, 998 –1007.
95. Hirose H., Kawai T., Yamamoto Y., Taniyama M., Tomita M., Matsubara K., Okazaki Y., Ishii T., Oguma Y., Takei I. and Saruta T. (2002): Effects of pioglitazone on metabolic parameters, body fat distribution and serum adiponectin levels in Japanese male patients with type 2 diabetes. Metabolism, 51, 314 –317.
96. Maeda N., Takahashi M., Funahashi T., Kihara S., Nishizawa H., Kishida K., Nagaretani H., Matsuda M., Komuro R., Ouchi N., Kuriyama H., Hotta K., Nakamura T., Shimomura I. and Matsuzawa Y. (2001): PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes, 50, 2094–2099.
97. Yang W. S., Jeng C. Y., Wu T. J., Tanaka S., Funahashi T., Matsuzawa Y., Wang J. P., Chen C. L., Tai T. Y. and Chuang L. M. (2002): Synthetic peroxisome proliferator--activated receptor-γ agonist, rosiglitazone, increases plasma levels of adiponectin in type 2 diabetic patients. Diabetes Care, 25, 376–380.
98. Yu J. G., Javorschi S., Hevener A. L., Kruszynska Y. T., Norman R. A., Sinha M. and Olefsky J. M. (2002): The effect of thiazolidinediones on plasma adiponectin levels in normal, obese, and type 2 diabetic subjects. Diabetes, 51, 2968–2974.
99. Yamauchi T., Kamon J., Waki H., Terauchi Y., Kubota N., Hara K., Mori Y., Ide T., Murakami K., Tsuboyama--Kasaoka N., Ezaki O., Akanuma Y., Gavrilova O., Vinson C., Reitman M. L., Kagechika H., Shudo K., Yoda M., Nakano Y., Tobe K., Nagai R., Kimura S., Tomita M., Froguel P. and Kadowaki T. (2001): The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med., 7, 941–946.
100. Combs T. P., Berg A. H., Obici S., Scherer P. E. and Rossetti L. (2001): Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J. Clin. Invest., 108, 1875–1881.
101. Mohamed-Ali V., Goodrick S., Rawesh A., Katz D. R., Miles J. M., Yudkin J.S., Klein S. and Coppack S. W. (1997): Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J. Clin. Endocrinol. Metab., 82, 4196–4200.
102. Bastard J. P., Jardel C., Bruckert E., Blondy P., Capeau J., Laville M., Vidal H. and Hainque B. (2000): Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J. Clin. Endocrinol. Metab., 85, 3338–3342.
103. Hotamisligil G. S. and Spiegelman B. M. (1994): Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes, 43, 1271–1278.
104. Lang C. H., Dobrescu C. and Bagby G. J. (1992): Tumor necrosis factor impairs insulin action on peripheral glucose disposal and hepatic glucose output. Endocrinology, 130, 43–52.
105.  Hotamisligil G. S., Shargill N. S. and Spiegelman B. M. (1993): Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science, 259, 87–91.

Recomonded Articles:

Author(s): Rutuja Sawant, Aloka Baghkar, Sanjukta Jagtap, Lina Harad, Anagha Chavan, Nilofar A. Khan, Rupali P. Yevale, Mohan K. Kale

DOI: 10.5958/2231-5659.2018.00031.0         Access: Closed Access Read More

Author(s): Rayate Yogita, Shaikh Samina, Sakhare Pooja, Gandhi Jyotsana

DOI: 10.5958/2231-5659.2018.00018.8         Access: Open Access Read More

Author(s): Dibyajyoti Saha. Milan Hait

DOI:         Access: Open Access Read More

Author(s): Merlin N.J., Sufiyan, Chitra C. Nair, Shaiju S. Dharan

DOI:         Access: Open Access Read More

Asian Journal of Research in Pharmaceutical Sciences (AJPSci) is an international, peer-reviewed journal, devoted to pharmaceutical sciences....... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2231-5659 


Recent Articles




Tags